scholarly journals Disproportion in T-cell subpopulations in immunodeficient mutant hr/hr mice.

1979 ◽  
Vol 149 (1) ◽  
pp. 228-233 ◽  
Author(s):  
A B Reske-Kunz ◽  
M P Scheid ◽  
E A Boyse

Mice of the HRS strain, which carry the mutant gene hr, were examined for abnormalities in representation of the three T-cell sets Ly1, Ly23, and Ly123 in the spleen. The salient feature of hr/hr mice, which are immunologically deficient, in comparison with +/hr segregants, was a gross disproportion in numbers of cells belonging to the Ly1 and Ly123 sets, at the age of 3--3.5 mo. At this age, Ly123 cells of hr/hr spleen outnumbered Ly1 cells by 2:1, whereas in +/hr spleens Ly123 cells were outnumbered by approximately 1:2. Cells from pooled lymph nodes of hr/hr mice did not show a correspondingly gross disporprotion of Ly1 and Ly123 cells. Total counts of splenic T cells, and of B cells, were not significantly different in hr/hr and +/hr mice.

2020 ◽  
Vol 22 (1) ◽  
pp. 274
Author(s):  
Claudia Curci ◽  
Angela Picerno ◽  
Nada Chaoul ◽  
Alessandra Stasi ◽  
Giuseppe De Palma ◽  
...  

Adult Renal Stem/Progenitor Cells (ARPCs) have been recently identified in the human kidney and several studies show their active role in kidney repair processes during acute or chronic injury. However, little is known about their immunomodulatory properties and their capacity to regulate specific T cell subpopulations. We co-cultured ARPCs activated by triggering Toll-Like Receptor 2 (TLR2) with human peripheral blood mononuclear cells for 5 days and 15 days and studied their immunomodulatory capacity on T cell subpopulations. We found that activated-ARPCs were able to decrease T cell proliferation but did not affect CD8+ and CD4+ T cells. Instead, Tregs and CD3+ CD4- CD8- double-negative (DN) T cells decreased after 5 days and increased after 15 days of co-culture. In addition, we found that PAI1, MCP1, GM-CSF, and CXCL1 were significantly expressed by TLR2-activated ARPCs alone and were up-regulated in T cells co-cultured with activated ARPCs. The exogenous cocktail of cytokines was able to reproduce the immunomodulatory effects of the co-culture with activated ARPCs. These data showed that ARPCs can regulate immune response by inducing Tregs and DN T cells cell modulation, which are involved in the balance between immune tolerance and autoimmunity.


Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4104-4112 ◽  
Author(s):  
Jean-Marc Gauguet ◽  
Steven D. Rosen ◽  
Jamey D. Marth ◽  
Ulrich H. von Andrian

Abstract Blood-borne lymphocyte trafficking to peripheral lymph nodes (PLNs) depends on the successful initiation of rolling interactions mediated by L-selectin binding to sialomucin ligands in high endothelial venules (HEVs). Biochemical analysis of purified L-selectin ligands has identified posttranslational modifications mediated by Core2GlcNAcT-I and high endothelial cell GlcNAc-6-sulfotransferase (HECGlcNAc6ST). Consequently, lymphocyte migration to PLNs of C2GlcNAcT-I-/- and HEC-GlcNAc6ST-/- mice was reduced; however, B-cell homing was more severely compromised than T-cell migration. Accordingly, intravital microscopy (IVM) of PLN HEVs revealed a defect in B-cell tethering and increased rolling velocity (Vroll) in C2GlcNAcT-I-/- mice that was more pronounced than it was for T cells. By contrast, B- and T-cell tethering was normal in HEC-GlcNAc6ST-/- HEVs, but Vroll was accelerated, especially for B cells. The increased sensitivity of B cells to glycan deficiencies was caused by lower expression levels of L-selectin; L-selectin+/- T cells expressing L-selectin levels equivalent to those of B cells exhibited intravascular behavior similar to that of B cells. These results demonstrate distinct functions for C2GlcNAcT-I and HEC-GlcNAc6ST in the differential elaboration of HEV glycoproteins that set a threshold for the amount of L-selectin needed for lymphocyte homing. (Blood. 2004;104:4104-4112)


1976 ◽  
Vol 144 (3) ◽  
pp. 685-698 ◽  
Author(s):  
K Okumura ◽  
L A Herzenberg ◽  
D B Murphy ◽  
H O McDevitt ◽  
L A Herzenberg

Data presented here show that locidentify in the I-region of the H-2 gene complex are selectively expressed in different functional T-cell subpopulations. These loci are closely linked (or possibly identical) to loci that control immune responses. They control surface determinants which identify helper and suppressor T lymphocytes. Determinants described here on allotype suppressor T cells (Ts) are found on normal (nonsuppressed) lymphoid cells, but are not found on helper T cells (Th). These determinants are controlled by a locus mapping in the I region of the H-2 complex. In an accompanying publication we show that this locus (Ia-4) marks a new I subregion (I-J) and is expressed only on T cells. Thus Ia-4 determinants idenfity a T-cell subpopulation which includes Ts but not Th. Th also carry identifying surface determinants controlled by loci that map to the H-2 complex, probably within the I region. These determinants are not found on Ts. Data presented also establish that loci in the I region control determinants on Th, but do not conclusively demonstrate that these are the determinants that distinguish Th from Ts. The selective expression of H-2-controlled determinants on Ts and Th suggests that these determinants are directly involved in immunoregulation.


Vaccine ◽  
2001 ◽  
Vol 19 (15-16) ◽  
pp. 1968-1977 ◽  
Author(s):  
Thomas Klünner ◽  
Thomas Bartels ◽  
Martin Vordermeier ◽  
Reinhard Burger ◽  
Hubert Schäfer

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2611-2611
Author(s):  
Luca Biasco ◽  
Cristina Baricordi ◽  
Stefania Merella ◽  
Cynthia Bartholomae ◽  
Alessandro Ambrosi ◽  
...  

Abstract Abstract 2611 The long-standing model of human haematopoiesis postulates that myeloid and lymphoid lineages branch separately at very early stages, producing myeloid or erythroid cells and T or B cells, respectively. Conversely, a revised scheme of haematopoietic hierarchy was recently proposed, in which myeloid cells represent a prototype of blood cells, while erythroid, T and B cells are specialized cell types. The validity of these models has been mainly tested in vivo in the mouse, and in vitro through clonal assays on human haemopoietic stem cells (HSC). However, a clear definitive elucidation of the real nature of human haemopoiesis should ideally involve the ability to track the dynamics, survival and differentiation potential of haemopoietic progenitor clones for a long period of time directly in vivo in humans. Upon retroviral gene transfer, transduced cells are univocally tagged by vector insertions allowing them to be distinguished and tracked in vivo by integration profiling. We previously showed that gene therapy (GT) for adenosine deaminase (ADA) deficient SCID based on infusion of transduced CD34+ cells and reduced intensity conditioning, resulted in full multilineage engraftment, in the absence of aberrant expansions. Therefore, long-term studies in these patients provide a unique human model to study in depth haemopoietic clonal dynamics by retroviral tagging. For this reason, we performed a comprehensive multilineage longitudinal insertion profile of bone marrow (BM) (CD34+, CD15+, CD19+, Glycophorin+) and peripheral blood (PB) (CD15+, CD19+, CD4+, CD8+ cells, naïve and memory T cell subpopulations) cells in 4 patients 3–6 years after GT, retrieving to date 1055 and 1999 insertions from BM and PB cell lineages respectively. We could shape the insertional landscape of each lineage through a tri-factorial analysis based on the number of integrations retrieved, the percentage of vector positive cells and the number of insertion shared with other lineages. We were able to uncover the effects of selective advantages of gene-corrected cells in periphery and the frequency of identical integrants in different haematopoietic compartments. BM cells displayed the highest proportion of shared integrants (up to 58.1%), reflecting the real-time repopulating activity of gene-corrected progenitors. On the other hand, PB samples carried in general a higher frequency of vector positive cells, with the exception of PB CD15+ cells showing insertional landscapes very similar to the one of BM lineages. Interestingly, the detection of exclusively shared myeloid-T\B or myeloid-erythroid integrants may be supportive of a myeloid-based haemopoiesis model. We also uncovered “core integrants”, shared between CD34+ cells and both lymphoid and myeloid lineages, stably tagging active long-term multipotent progenitors overtime. Strikingly, one of these progenitor clones carried an insertion inside one of the two fragile sites of MLLT3 gene, involved by translocation events in mixed lineage leukemia. We were able to track this and another integrant (downstream the LRRC30 gene) by specific PCRs, confirming the multilineage contribution to haematopoiesis of the relative progenitor clones and their fluctuating lineage outputs over 4 years, without showing aberrant expansions. We also retrieved 170 and 174 integrations from 4 T cell subtypes (Naive, TEMRA, Central and Effector memory) in two patients under PBL-GT and HSC-GT respectively. We found evidences that single naive T cell clones may survive in patients for up to 10 years after last infusion while maintaining their differentiation capacity into different T cell subpopulations. Interestingly, a cluster of 4 insertions (one of them shared among all T cell subtypes) was found in proximity of the interferon regulatory factor 2 binding protein 2 (IRF2BP2) gene in naive T cells from PBL-GT patient, thus suggesting an influence of transcriptional activity of this region on selective advantage of gene-corrected lymphocytes. In conclusion, through retroviral tagging, we can uniquely track single transduced haemopoietic cells directly in vivo in humans. The application of mathematical models to our insertion datasets is allowing to uncover new information on the fate and activity of haematopoietic progenitors and their differentiated progeny years after transplantation in GT patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4630-4630
Author(s):  
Marays Veliz ◽  
John Powers ◽  
Ling Zhang ◽  
Enrique Santana ◽  
Jeffrey E. Lancet ◽  
...  

Abstract Abstract 4630 Background: The prognosis of patient with relapsed or refractory CLL/SLL is dismal with an overall response rate (ORR) to salvage therapy for refractory patients of 10–30%, and limited survival benefit with current treatment approaches. Phase II studies of single agent lenalidomide in patients with relapsed or refractory CLL revealed an ORR of 32–58% (7-17% CR). Recent in vitro studies have shown that lenalidomide enhances the rituximab-induced killing of NHL cell lines and B-CLL cells by enhancing ADCC activity and restoring the defective T-cell and NK-cell mediated tumor cell cytotoxicity. Methods: Patients with relapsed or refractory CLL/SLL received oral lenalidomide via dose escalation as follows: 2.5 mg on days 1–7, 5 mg on days 8–14 and 10 mg on days 15–21 followed by 7 days of rest in 28-day cycle; for cycle 2 and beyond 20 mg was given on days 1–21 on a 28-day cycle. Rituximab was dosed at 375 mg/m2 IV weekly for 4 weeks starting on day 15 of cycle 1. Treatment was continued until disease progression or toxicity. Primary objectives were ORR (CR+PR) and safety and tolerability of the combination regimen. CT scans, and bone marrow biopsies were done every 2 months to assess for response (NCI-WG 2008). Peripheral blood and bone marrow aspirates were collected for correlative studies before lenalidomide was initiated, before rituximab was initiated (between days 13–15), after finishing treatment with rituximab and then every two months until disease progression. Flow cytometry was performed using the following antibodies CD3, CD4, CD5, CD8, CD19, CD20, CD23, CD40, CD45RA, CD62L, CD80, CD86, CD95, IL-17A and FoxP3. Panels were created for the analysis of T-cell memory/naïve populations, B-cell populations, regulatory T-cells and Th17 cells. Data was collected to a limit of 10,000 events of the population of interest. Data is presented as total number of cells/ul instead as percentage to avoid misinterpretation due to the dramatic reduction in the number of B cell lymphocytes after initiation of therapy. Subpopulation of T cells memory/naïve were compared with an age matched population of normal controls. Results: 18 patients with CLL/SLL were enrolled on study. Median number of prior chemotherapies was 3 (range 1–5). Median age was 63 years (range 42–80). High risk cytogenetic abnormalities (del11q (11%), del 17p/p53 (11%), complex (22%)) were observed in 44% of the patients. 95% of the patients had received prior fludarabine therapy and 50% were fludarabine refractory. Overall clinical benefit was seen in 92% of patients (42% PR, 50% SD) with a median duration of response of 18 months for patients who achieved a PR and 12 months for patients with SD. Although all responses were PR, the PR rate improved with continued therapy suggesting increased responses with a longer duration of treatment with lenalidomide. Most common adverse effects were neutropenia (50% grade 3–4), tumor flare (28% grade 1–2, 11% grade 3–4), fatigue (11% grade 1–2, 6% grade 3–4), venous thromboembolic disease (11% grade 3–4), acute renal insufficiency (11%), rituximab related infusion reactions (11%), flu-like symptoms (11%), infections (11%), and hypercalcemia (11%). Correlative studies showed that peripheral blood CD4 and CD8 effector memory subpopulations decreased after initiation of lenalidomide therapy with subsequent elevation after rituximab treatment on the CD4 effector memory compartment. The Th17 compartment was minimally decreased after initiation of lenalidomide while the levels of regulatory T cells (Tregs) appeared to decrease with lenalidomide therapy and increase slightly after rituximab. The expression of CD20 from bone marrow samples decreased as expected with rituximab therapy; however shortly after the discontinuation of rituximab CD20 expression was regained by the B cells compartment. Later time points will be presented at the meeting. Conclusions The combination of lenalidomide with rituximab is a promising with clinical activity in heavily pretreated patients with relapsed or refractory CLL. The combination appears tolerable with observed events consistent with the use of these two agents in other studies. The impact of lenalidomide on the T cell subpopulations in patients treated with rituximab remains unclear. A detailed analysis of the BM compartment at latter time points will be investigated. Disclosures: Lancet: Eisai: Consultancy; Celgene: Honoraria. Komrokji:Genentech: Research Funding.


1981 ◽  
Vol 154 (4) ◽  
pp. 1100-1115 ◽  
Author(s):  
Y Asano ◽  
A Singer ◽  
RJ Hodes

The present study has evaluated the identity of the B cell subpopulations participating in T dependent antibody responses that differ in their requirements for major histocompatibility complex-restricted T cell recognition. In vitro responses of keyhole limpet hemocyanin (KLH)-primed T cells and trinitrophenyl (TNP)-primed B cells were studied to both low and high concentrations of the antigen TNP-KLH. It was first demonstrated that for responses to low concentrations of TNP-KLH, (A × B)F(1) {arrow} parent(A) chimeric helper T cells were restricted in their ability to recognize parent(A) but not parent(B) H-2 determinants expressed by both B cells and antigen-presenting cells (APC). In contrast, at higher antigen concentrations, helper T cells were not restricted in their interaction with B cells. It was then determined whether these observed differences in T cell recognition resulted from the activation of distinct B cell subpopulations with different activation requirements. At low concentrations of TNP-KLH it was demonstrated that Lyb-5(-) B cells were activated, and that it was thus the activation of the Lyb-5(-) subpopulation that required T cell recognition of B cell H-2 under these conditions. In contrast, responses to high concentration of antigen required the participation of Lyb-5(+) B cells, and these Lyb-5(+) B cells were activated by a pathway that required H-2- restricted T cell interaction with APC, but not with B cells. The findings presented here have demonstrated that Lyb-5(-) and Lyb-5(+) B cells constitute B cell subpopulations that differ significantly in their activation requirements for T cell-dependent antibody responses to TNP-KLH. In so doing, these findings have established that the function of genetic restrictions in immune response regulation is critically dependent upon the activation pathways employed by functionally distinct subpopulations of B, as well as T, lymphocytes.


Blood ◽  
1979 ◽  
Vol 54 (2) ◽  
pp. 540-544 ◽  
Author(s):  
NE Kay ◽  
JD Johnson ◽  
R Stanek ◽  
SD Douglas

Purified human thymus-derived (T) lymphocytes were analyzed by detection of Fc receptors for either IgG or IgM in healthy controls and in patients with chronic lymphocytic leukemia (CLL). There was a significant and persistent increase in the numbers of T cells bearing receptors for IgG (Fc gamma) in CLL patients in comparison to the controls. After an in vitro culture period, there was a significantly decreased appearance of cells with IgM receptors (Fcmu) in CLL patients in comparison to the control group. These results indicate an imbalance in circulating T-cell subpopulations for CLL patients. In addition, an in vitro defect in CLL T-cell membrane receptor appearance is present.


2020 ◽  
Author(s):  
Tibra A. Wheeler ◽  
Adrien Y. Antoinette ◽  
Matthew J. Kim ◽  
Marjolein C. H. van der Meulen ◽  
Ankur Singh

AbstractOsteoarthritis (OA) is a degenerative disease that manifests as joint damage and synovial inflammation. To date, most studies have focused on the decrease in cartilage stiffness, chondrocyte viability, and changes in matrix-degrading enzymes. With the exception of a few inflammatory cytokines and macrophages, the immune response in OA is poorly characterized, and the crosstalk of joint damage with T and B cells in local lymph nodes is unknown. Here, using an in vivo mouse model of mechanical loading of mouse tibia, we demonstrate that CD8+ T cells and subsets of CD4+ T cells, and not B cells, increase in the local lymph nodes and contribute to the progression of load-induced OA pathology. We demonstrate that T cell response is sex- and age-dependent. Mechanical loading of T cell knock-out mice that lack αβ T cell receptor carrying cells resulted in attenuation of both cartilage degradation and osteophyte formation in loaded joints, with a concomitant increase in γδ+ T cells. Restricting the migration of T cells in lymphoid tissues through the systemic treatment using Sphingosine-1-phosphate (S1P) inhibitor, decreased localization of T cells in synovium, and attenuated cartilage degradation. Our results lay the foundation of the role T cells play in the joint damage of load-induced OA and allude to the use of S1P inhibitors and T cell immunotherapies for slowing the progression of OA pathology.


Sign in / Sign up

Export Citation Format

Share Document