scholarly journals Isotype commitment in the in vivo immune responses. I. Antigen-dependent specific and polyclonal plaque-forming cell responses by B lymphocytes induced to extensive proliferation.

1982 ◽  
Vol 156 (3) ◽  
pp. 690-702 ◽  
Author(s):  
M Björklund ◽  
A Coutinho

The random recombination and deletion hypothesis for the control of isotype commitment in antibody responses was directly tested in a serial transfer system in vivo. Normal or hyperimmune spleen cells were used in weekly serial transfers with antigen into irradiated recipients until clonal senescence was observed. Antigen-specific and -nonspecific plaque-forming cells of all isotypes were determined at each transfer time. No major changes in the isotypes of specific antibodies were observed for the whole life-span of the transferred cells (9-10 wk), and no indication was obtained for the accumulation of cells transcribing the most 3' members of the C-gene cluster with sustained proliferation. Rather, the dominant isotypes were found throughout the response to be IgG1, IgG2b, and IgG2a. The results imply isotype-specific regulatory mechanisms in the control of Ig class production. These appear to operate as well in the antigen-nonspecific component of the immune response.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2772-2772 ◽  
Author(s):  
Kimberly Ann Noonan ◽  
Anna Ferguson ◽  
Carol A. Huff ◽  
Amy Emerling ◽  
Stephanie Mgebroff ◽  
...  

Abstract Aim: Pre-clinical data suggest that lenalidomide imparts an immunomodulatory effect. This clinical trial in relapsed myeloma patients examined the ability of lenalidomide to augment both endogenous as well as vaccine-specific immune responses in vivo. Methods: Relapsed, lenalidomide naïve, patients treated with 3 or less prior regimens were eligible for the study. Prevnar®, a pneumococcal vaccine, was given either before or during administration of lenalidomide in two cohorts of patients. Cohort A received their first vaccination prior to administration of drug, and the second vaccine on cycle 2, day 15 of lenalidomide. Cohort B were first vaccinated on cycle 2, day 15 and then cycle 4, day 15. Patients were treated with 25mg of lenalidomide daily days 1–21 every 28 days for 6 cycles. Pneumococcal serotype titres as well as CRM-197 T cell responses quantified the B and T cell responses, respectively, to Prevnar vaccination and were correlated with lenalidomide administration. Systemic immune responsiveness was determined by delayed type hypersensitivity (DTH) responses to Candida and tetanus and quantification of cytokines in the peripheral blood (PBL) serum and bone marrow (BM) plasma. Results: A median two-fold increase in antibody responses to Prevnar was observed in cohort B, whereas cohort A demonstrated an 80% decrease in antibody titres. Antibody responses in the bone marrow were more pronounced than in blood and were greatest in Cohort B. 1.8% of the total T cell population proliferated to CRM-197 in Cohort B vs. 0% in Cohort A. Increases in DTH responses were seen in 50% of patients post lenalidomide. Luminex was utilized to measure cytokine levels pre and post lenalidomide. Globally, IL-6 levels were greatly reduced in both the BM (88% reduction) and PBL (77% reduction) samples. Both IFNγ and IL-17 were undetectable in the PBL samples, but were elevated and unchanged respectively in BM samples. Levels of IL-10 peaked in both cohorts after the first vaccination but were ultimately reduced with the administration of lenalidomide, and overall the levels were higher in the BM than PBL samples. MCP-1 and MIP-1β levels showed an overall decrease over the course of the trial. There was no alteration of IL2, IL-4, IL-5, TNFα, IL-7, IL-1 β, IL-12, IL-13, G-CSF or GM-CSF levels with the administration of lenalidomide. Conclusions: This is the first comprehensive examination of the immunomodulatory effect of lenalidomide on global and vaccine specific in vivo immune responses. We show that the most potent immune response was observed when both prime and boost vaccines were administered while receiving lenalidomide. Immune enhancement by lenalidomide was seen in both the blood and BM compartments. Of note, the serologic titres were greater in the BM than blood and the T cell responses (when observed) appeared greater in the BM. These data provide evidence of the important role of bone marrow niche in the maintenance of immune memory responses. The increased DTH response to both Candida and tetanus provides in vivo evidence of lenalidomide-mediated immune enhancement. Taken together, these data demonstrate that lenalidomide augments in vivo immune responses in patients with advanced/relapsed multiple myeloma. This study provides the rationale for utilizing this drug in combination with cancer vaccines to augment anti-tumor efficacy or with infectious vaccines. Figure Figure


1973 ◽  
Vol 138 (1) ◽  
pp. 143-162 ◽  
Author(s):  
J. Sprent ◽  
J. F. A. P. Miller

When spleen, mesenteric lymph node, or Peyer's patch cells from mice primed 24 h before with either sheep erythrocytes (SRC) or horse erythrocytes (HRC) were transferred together with both SRC and HRC to irradiated mice, antibody responses measured 7 days later were very low to the priming antigen but high to the other antigen. This was demonstrated either by measuring numbers of antibody-forming cells in spleen or levels of hemagglutinins in serum. Specific unresponsiveness of the transferred cells was evident in both the 19S and 7S responses. It was observed only when strict experimental conditions were followed: (a) the cell donors had to be primed with not less than 109 erythrocytes given intravenously; (b) the cells had to be transferred between 1 and 2 days after antigen priming; (c) antibody responses in the recipients were measured within 7 days of cell transfer, i.e., partial recovery was evident by 11 days; (d) the transferred cells had to be challenged in the recipients within 1 day after cell transfer: when challenge was delayed for 5 days or longer, responsiveness returned. The failure of cells from recently primed donors to respond to the priming antigen on adoptive transfer could be overcome by supplementing with normal spleen cells, but not with thymus alone or bone marrow alone. This implied that unresponsiveness occurred at the levels of both T and B lymphocytes, and was not due to a suppressive influence exerted by T cells. Further work is in progress to determine the mechanism of this transient state of specific unresponsiveness.


1977 ◽  
Vol 146 (4) ◽  
pp. 1152-1157 ◽  
Author(s):  
D L Kastner ◽  
R R Rich ◽  
L Chu ◽  
S S Rich

A mixed leukocyte reaction suppressor factor is produced by spleen cells sensitized in vivo and restimulated in vitro across non-H-2 antigenic barriers. Cells capable of producing this factor appear in the spleens of minor locus-immunized animals later than in animals sensitized to major histocompatibility complex-encoded antigens. However, both H-2 and non H-2-induced factors suppress proliferative responses to any alloantigen. Splenocytes from animals immunized with H-2-identical, minor locus-disparate cells produce suppressor factor in vitro only when restimulated with cells sharing both H-2 and non-H-2 antigens with the in vivo stimulators.


2021 ◽  
Author(s):  
Lei Peng ◽  
Jonathan J. Park ◽  
Zhenhao Fang ◽  
Xiaoyu Zhou ◽  
Matthew B. Dong ◽  
...  

AbstractLipid-nanoparticle(LNP)-mRNA vaccines offer protection against COVID-19. However, multiple variant lineages caused widespread breakthrough infections. There is no report on variant-specific vaccines to date. Here, we generated LNP-mRNAs specifically encoding wildtype, B.1.351 and B.1.617 SARS-CoV-2 spikes, and systematically studied their immune responses in animal models. All three LNP-mRNAs induced potent antibody responses in mice. However, WT-LNP-mRNA vaccination showed reduced neutralization against B.1.351 and B.1.617; and B.1.617-specific vaccination showed differential neutralization. All three vaccine candidates elicited antigen-specific CD8 and CD4 T cell responses. Single cell transcriptomics of B.1.351-LNP-mRNA and B.1.617-LNP-mRNA vaccinated animals revealed a systematic landscape of immune cell populations and global gene expression. Variant-specific vaccination induced a systemic increase in reactive CD8 T cell population, with a strong signature of transcriptional and translational machineries in lymphocytes. BCR-seq and TCR-seq unveiled repertoire diversity and clonal expansions in vaccinated animals. These data provide direct systems immune profiling of variant-specific LNP-mRNA vaccination in vivo.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mauro Di Pilato ◽  
Miguel Palomino-Segura ◽  
Ernesto Mejías-Pérez ◽  
Carmen E. Gómez ◽  
Andrea Rubio-Ponce ◽  
...  

AbstractNeutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known. In this study, we find that these neutrophil subtypes show distinct migratory and motility patterns and different ability to interact with CD8 T cells in the spleen following vaccinia virus (VACV) infection. Moreover, after analysis of adhesion, inflammatory, and migration markers, we observe that Nβ neutrophils overexpress the α4β1 integrin compared to Nα. Finally, by inhibiting α4β1 integrin, we increase the Nβ/Nα ratio and enhance CD8 T-cell responses to HIV VACV-delivered antigens. These findings provide significant advancements in the comprehension of neutrophil-based control of adaptive immune system and their relevance in vaccine design.


2017 ◽  
Vol 214 (9) ◽  
pp. 2563-2572 ◽  
Author(s):  
Spencer W. Stonier ◽  
Andrew S. Herbert ◽  
Ana I. Kuehne ◽  
Ariel Sobarzo ◽  
Polina Habibulin ◽  
...  

Until recently, immune responses in filovirus survivors remained poorly understood. Early studies revealed IgM and IgG responses to infection with various filoviruses, but recent outbreaks have greatly expanded our understanding of filovirus immune responses. Immune responses in survivors of Ebola virus (EBOV) and Sudan virus (SUDV) infections have provided the most insight, with T cell responses as well as detailed antibody responses having been characterized. Immune responses to Marburg virus (MARV), however, remain almost entirely uncharacterized. We report that immune responses in MARV survivors share characteristics with EBOV and SUDV infections but have some distinct differences. MARV survivors developed multivariate CD4+ T cell responses but limited CD8+ T cell responses, more in keeping with SUDV survivors than EBOV survivors. In stark contrast to SUDV survivors, rare neutralizing antibody responses in MARV survivors diminished rapidly after the outbreak. These results warrant serious consideration for any vaccine or therapeutic that seeks to be broadly protective, as different filoviruses may require different immune responses to achieve immunity.


2011 ◽  
Vol 19 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Jin Huk Choi ◽  
Joe Dekker ◽  
Stephen C. Schafer ◽  
Jobby John ◽  
Craig E. Whitfill ◽  
...  

ABSTRACTThe immune response to recombinant adenoviruses is the most significant impediment to their clinical use for immunization. We test the hypothesis that specific virus-antibody combinations dictate the type of immune response generated against the adenovirus and its transgene cassette under certain physiological conditions while minimizing vector-induced toxicity.In vitroandin vivoassays were used to characterize the transduction efficiency, the T and B cell responses to the encoded transgene, and the toxicity of 1 × 1011adenovirus particles mixed with different concentrations of neutralizing antibodies. Complexes formed at concentrations of 500 to 0.05 times the 50% neutralizing dose (ND50) elicited strong virus- and transgene-specific T cell responses. The 0.05-ND50formulation elicited measurable anti-transgene antibodies that were similar to those of virus alone (P= 0.07). This preparation also elicited very strong transgene-specific memory T cell responses (28.6 ± 5.2% proliferation versus 7.7 ± 1.4% for virus alone). Preexisting immunity significantly reduced all responses elicited by these formulations. Although lower concentrations (0.005 and 0.0005 ND50) of antibody did not improve cellular and humoral responses in naïve animals, they did promote strong cellular (0.005 ND50) and humoral (0.0005 ND50) responses in mice with preexisting immunity. Some virus-antibody complexes may improve the potency of adenovirus-based vaccines in naïve individuals, while others can sway the immune response in those with preexisting immunity. Additional studies with these and other virus-antibody ratios may be useful to predict and model the type of immune responses generated against a transgene in those with different levels of exposure to adenovirus.


2020 ◽  
Author(s):  
Pradeep Darshana Pushpakumara ◽  
Chandima Jeewandara ◽  
Laksiri Gomes ◽  
Yashodha Perera ◽  
Ananda Wijewickrama ◽  
...  

AbstractBackgroundAlthough immune responses to the Japanese Encephalitis virus (JEV), and the dengue viruses (DENV) have a potential to modulate the immune responses to each other, this has been poorly investigated. Therefore, we developed an ELISA to identify JEV specific, DENV non cross-reactive antibody responses by identifying JEV specific, highly conserved regions of the virus and proceeded to investigate if the presence of JEV specific antibodies associate with dengue disease severity.Methodology/Principal findings20 JEV specific peptides were identified from highly conserved regions of the virus and the immunogenicity and specificity of these peptides were assessed in individuals who were non-immune to JEV and DENV (JEV-DENV-, N=30), those who were only immune to the JEV and not DENV (JEV+DENV-, N=30), those who were only immune to DENV(JEV-DENV+, N=30) and in those who were immune to both viruses (JEV+DENV+, N=30). 7/20 peptides were found to be highly immunogenic and specific and these 7 peptides were used as a pool to further evaluate JEV-specific responses. All 30/30 JEV+DENV-and 30/30 JEV+DENV+individuals, and only 3/30 (10%) JEV-DENV+individuals responded to this pool. We further evaluated this pool of 7 peptides in patients following primary and secondary dengue infection during the convalescent period and found that the JEV-specific peptides, were unlikely to cross react with DENV IgG antibodies. We further compared this in-house ELISA developed with the peptide pool with an existing commercial JEV IgG assay to identify JEV-specific IgG following vaccination, and our in-house ELISA was found to be more sensitive. We then proceeded to investigate if the presence of JEV-specific antibodies were associated with dengue disease severity, and we found that those who had past severe dengue (n=175) were significantly more likely (p<0.0001) to have JEV-specific antibodies than those with past non-severe dengue (n=175) (OR 5.3, 95% CI 3.3 to 8.3).Conclusions/SignificanceAs our data show that this assay is highly sensitive and specific for detection of JEV-specific antibody responses, it would be an important tool to determine how JEV seropositivity modulate dengue immunity and disease severity when undertaking dengue vaccine trials.Author summaryBoth Japanese Encephalitis virus (JEV), and the dengue viruses (DENV) co-circulate in the same geographical region and have a potential to modulate the immune responses to each other. However, due to the difficulty in identifying antibody responses specific to either virus due to the highly cross-reactive nature of virus-specific antibodies, this has been poorly investigated. Therefore, we developed an ELISA to identify JEV-specific, DENV non cross-reactive antibody responses by identifying JEV-specific, highly conserved regions of the virus and proceeded to investigate if the presence of JEV-specific antibodies associates with dengue disease severity. 20 JEV-specific peptides were identified from highly conserved regions of the virus and the immunogenicity and specificity of these peptides were assessed. We found that seven peptides were highly immunogenic and specific to the JEV and we further evaluated the usefulness of an ELISA developed using these pools of peptides. We found that our in-house ELISA was found to be significantly more sensitive some of the existing commercial assays. As this assay appears to be highly sensitive and specific for detection of JEV-specific antibody responses, it would be an important tool to determine how JEV seropositivity modulate dengue immunity and disease severity when undertaking dengue vaccine trials.


1974 ◽  
Vol 140 (3) ◽  
pp. 648-659 ◽  
Author(s):  
Judith A. Kapp ◽  
Carl W. Pierce ◽  
Stuart Schlossman ◽  
Baruj Benacerraf

In recent studies we have found that GAT not only fails to elicit a GAT-specific response in nonresponder mice but also specifically decreases the ability of nonresponder mice to develop a GAT-specific PFC response to a subsequent challenge with GAT bound to the immunogenic carrier, MBSA. Studies presented in this paper demonstrate that B cells from nonresponder, DBA/1 mice rendered unresponsive by GAT in vivo can respond in vitro to GAT-MBSA if exogenous, carrier-primed T cells are added to the cultures. The unresponsiveness was shown to be the result of impaired carrier-specific helper T-cell function in the spleen cells of GAT-primed mice. Spleen cells from GAT-primed mice specifically suppressed the GAT-specific PFC response of spleen cells from normal DBA/1 mice incubated with GAT-MBSA. This suppression was prevented by pretreatment of GAT-primed spleen cells with anti-θ serum plus C or X irradiation. Identification of the suppressor cells as T cells was confirmed by the demonstration that suppressor cells were confined to the fraction of the column-purified lymphocytes which contained θ-positive cells and a few non-Ig-bearing cells. The significance of these data to our understanding of Ir-gene regulation of the immune response is discussed.


Author(s):  
Adrian Rice ◽  
Mohit Verma ◽  
Annie Shin ◽  
Lise Zakin ◽  
Peter Sieling ◽  
...  

ABSTRACTIn response to the health crisis presented by the COVID-19 pandemic, rapid development of safe and effective vaccines that elicit durable immune responses is imperative. Recent reports have raised the concern that antibodies in COVID-19 convalescent patients may not be long lasting and thus even these individuals may require vaccination. Vaccine candidates currently in clinical testing have focused on the SARS-CoV-2 wild type spike (S) protein (S-WT) as the major antigen of choice and while pre-clinical and early clinical testing have shown that S elicits an antibody response, we believe the optimal vaccine candidate should be capable of inducing robust, durable T-cell responses as well as humoral responses. We report here on a next generation bivalent human adenovirus serotype 5 (hAd5) vaccine capable of inducing immunity in patients with pre-existing adenovirus immunity, comprising both an S sequence optimized for cell surface expression (S-Fusion) and a conserved nucleocapsid (N) antigen designed to be transported to the endosomal subcellular compartment, with the potential to generate durable immune protection. Our studies suggest that this bivalent vaccine is optimized for immunogenicity as evidenced by the following findings: (i) The optimized S-Fusion displayed improved S receptor binding domain (RBD) cell surface expression compared to S-WT where little surface expression was detected; (ii) the expressed RBD from S-Fusion retained conformational integrity and recognition by ACE2-Fc; (iii) the viral N protein modified with an enhanced T-cell stimulation domain (ETSD) localized to endosomal/lysosomal subcellular compartments for MHC I/II presentation; and (iv) these optimizations to S and N (S-Fusion and N-ETSD) generated enhanced de novo antigen-specific B cell and CD4+ and CD8+ T-cell responses in antigen-naive pre-clinical models. Both the T-cell and antibody immune responses to S and N demonstrated a T-helper 1 (Th1) bias. The antibody responses were neutralizing as demonstrated by two independent SARS-CoV-2 neutralization assays. Based on these findings, we are advancing this next generation bivalent hAd5 S-Fusion + N-ETSD vaccine as our lead clinical candidate to test for its ability to provide robust, durable cell-mediated and humoral immunity against SARS-CoV-2 infection. Further studies are ongoing to explore utilizing this vaccine construct in oral, intranasal, and sublingual formulations to induce mucosal immunity in addition to cell-mediated and humoral immunity. The ultimate goal of an ideal COVID-19 vaccine is to generate long-term T and B cell memory.


Sign in / Sign up

Export Citation Format

Share Document