The Immunomodulatory Role of Lenalidomide on Prevnar® Responses in Patients with Relapsed Multiple Myeloma: A Comprehensive Analysis of the Immune Response

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2772-2772 ◽  
Author(s):  
Kimberly Ann Noonan ◽  
Anna Ferguson ◽  
Carol A. Huff ◽  
Amy Emerling ◽  
Stephanie Mgebroff ◽  
...  

Abstract Aim: Pre-clinical data suggest that lenalidomide imparts an immunomodulatory effect. This clinical trial in relapsed myeloma patients examined the ability of lenalidomide to augment both endogenous as well as vaccine-specific immune responses in vivo. Methods: Relapsed, lenalidomide naïve, patients treated with 3 or less prior regimens were eligible for the study. Prevnar®, a pneumococcal vaccine, was given either before or during administration of lenalidomide in two cohorts of patients. Cohort A received their first vaccination prior to administration of drug, and the second vaccine on cycle 2, day 15 of lenalidomide. Cohort B were first vaccinated on cycle 2, day 15 and then cycle 4, day 15. Patients were treated with 25mg of lenalidomide daily days 1–21 every 28 days for 6 cycles. Pneumococcal serotype titres as well as CRM-197 T cell responses quantified the B and T cell responses, respectively, to Prevnar vaccination and were correlated with lenalidomide administration. Systemic immune responsiveness was determined by delayed type hypersensitivity (DTH) responses to Candida and tetanus and quantification of cytokines in the peripheral blood (PBL) serum and bone marrow (BM) plasma. Results: A median two-fold increase in antibody responses to Prevnar was observed in cohort B, whereas cohort A demonstrated an 80% decrease in antibody titres. Antibody responses in the bone marrow were more pronounced than in blood and were greatest in Cohort B. 1.8% of the total T cell population proliferated to CRM-197 in Cohort B vs. 0% in Cohort A. Increases in DTH responses were seen in 50% of patients post lenalidomide. Luminex was utilized to measure cytokine levels pre and post lenalidomide. Globally, IL-6 levels were greatly reduced in both the BM (88% reduction) and PBL (77% reduction) samples. Both IFNγ and IL-17 were undetectable in the PBL samples, but were elevated and unchanged respectively in BM samples. Levels of IL-10 peaked in both cohorts after the first vaccination but were ultimately reduced with the administration of lenalidomide, and overall the levels were higher in the BM than PBL samples. MCP-1 and MIP-1β levels showed an overall decrease over the course of the trial. There was no alteration of IL2, IL-4, IL-5, TNFα, IL-7, IL-1 β, IL-12, IL-13, G-CSF or GM-CSF levels with the administration of lenalidomide. Conclusions: This is the first comprehensive examination of the immunomodulatory effect of lenalidomide on global and vaccine specific in vivo immune responses. We show that the most potent immune response was observed when both prime and boost vaccines were administered while receiving lenalidomide. Immune enhancement by lenalidomide was seen in both the blood and BM compartments. Of note, the serologic titres were greater in the BM than blood and the T cell responses (when observed) appeared greater in the BM. These data provide evidence of the important role of bone marrow niche in the maintenance of immune memory responses. The increased DTH response to both Candida and tetanus provides in vivo evidence of lenalidomide-mediated immune enhancement. Taken together, these data demonstrate that lenalidomide augments in vivo immune responses in patients with advanced/relapsed multiple myeloma. This study provides the rationale for utilizing this drug in combination with cancer vaccines to augment anti-tumor efficacy or with infectious vaccines. Figure Figure

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2794-2794
Author(s):  
Els Van Valckenborgh ◽  
Jo Van Ginderachter ◽  
Kiavash Movahedi ◽  
Eline Menu ◽  
Karin Vanderkerken

Abstract Abstract 2794 Poster Board II-770 Myeloid-derived suppressor cells (MDSCs) are a heterogeneous mix of myeloid cells in different maturation stages generated in the bone marrow. The role of MDSCs in cancer is to suppress T-cell responses, thereby likely regulating tumor progression. In mice, MDSCs are identified by the expression of the surface markers CD11b and Gr-1. Recently, Ly6G+ granulocytic (PMN-MDSC) and Ly6G− monocytic (MO-MDSC) subsets could be distinguished (Movahedi et al. Blood 2008, 111:4233-44). In multiple myeloma patients, the immune function is impaired and this is caused by an immunologically hostile microenvironment and cellular defects, such as decreased numbers of immune cells, and DC or T-cell dysfunction. However, the role of MDSCs in immune suppression in multiple myeloma is not yet described. In this study, we investigated the immunosuppressive activity and mechanism of MDSC subsets in the syngeneic and immunocompetent 5TMM mouse model (5T2 and 5T33 models). In first instance, CD11b+Ly6G− and CD11b+Ly6G+ lineage-committed myeloid MDSC subsets were detected in 5TMM-diseased bone marrow by flow cytometry. These subsets were purified via MACS from the bone marrow of naïve and 5TMM tumor-bearing mice, and analyzed for T-cell suppressive activity. Hereto, CD8+ TCR-transgenic OT-1 splenocytes were stimulated with ovalbumin protein in the presence of purified MDSC subsets, after which T-cell proliferation was measured via 3H-thymidine incorporation. Both MDSC subsets from 5TMM bone marrow were able to suppress antigen-specific T-cell responses at a higher level compared to purified MDSC subsets from normal bone marrow. On average, Ly6G− MDSCs were more suppressive than Ly6G+ MDSCs. The 5T2MM model has a tumor take of approximately 12 weeks. Three weeks after intravenous inoculation of the tumor cells, the suppressive effect of the myeloid subsets was already observed (while the plasmacytosis in the BM was very low and no detectable serum M spike was observed), indicating that T-cell suppression is an early event in MM development. To unravel the suppressive mechanism of the MDSC subsets, inhibitors were used in ovalbumin-stimulated cocultures. Ly6G− MDSC-mediated suppression was partially reversed by the iNOS inhibitor L-NMMA and the COX-2 inhibitor sc-791, both of which lower the NO concentration in culture. In contrast, superoxide dismutase and especially catalase enhance NO concentrations, resulting in enhanced T-cell suppression. None of these inhibitors had any impact on the Ly6G+ MDSC-mediated suppression. In conclusion, these data reveal the presence of MDSCs as a novel immune suppressive strategy employed by multiple myeloma cells in the bone marrow, already occurring early in the disease process. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 815-815
Author(s):  
Melinda A. Biernacki ◽  
Guanglan Zhang ◽  
Wandi Zhang ◽  
Vladimir Brusic ◽  
Robert J. Soiffer ◽  
...  

Abstract Syngeneic hematopoietic stem cell transplantation (HSCT) can produce long-term disease-free survival in patients with hematologic malignancies including multiple myeloma (MM). Since donor and host are genotypically identical in this setting, allo-immunity is absent and curative responses may result from donor-derived immune responses against tumor-associated antigens. Our previous studies suggest that B cell responses play a role in successful graft-versus-tumor responses, and their identification may accelerate the discovery of targets of coordinated T cell immunity. To identify graft-versus- myeloma target antigens, we performed a detailed analysis of the humoral immune response in an HLA-A2+ patient with MM who underwent myeloablative syngeneic HSCT and achieved molecular remission now lasting more than 2 years. We probed high-density protein microarrays consisting of ~8000 expressed open reading frames with plasma obtained before and at 3, 6, 12, and 16 months after HSCT. Bioinformatic analysis identified 6 unique candidate antigens that elicited significantly increased post- HSCT antibody reactivity compared to pre-HSCT plasma, plasma from the patient’s stem cell donor, and plasma from 2 age-, sex-, and parity-matched normal controls. Two patterns of antibody reactivity were observed: early responses directed at DAPK2, PIM1, and PRKCB1 peaking at 3 months post-HSCT; and late responses to C1orf116, PDGFRB, and RELA proteins arising at 1 year post-HSCT. By antigen-specific ELISA, positive antibody responses against 4 antigens (DAPK2, PDGFRB, PIM1, PRKCB1) were detected in patients with untreated MM (1/10, 1/10, 1/10, and 2/10, respectively), MM patients with durable responses after autologous transplant (1/10, 1/10, 1/10, and 2/10) and patients with monoclonal gammopathy of unknown significance (3/10, 1/10, 0/10, and 1/10, respectively), but not in 10 normal donors. Moreover, 4 of 6 patients achieving durable remission after allo-HSCT each demonstrated antibody responses against 1 to 3 of the 4 candidate antigens. These antibody responses developed in temporal association with clinical responses. Gene expression analysis using Affymetrix U133Plus 2.0 microarrays revealed high expression of 3 of 6 antigens (PIM1, PRKCB1, RELA) in CD138+-selected MM bone marrow samples (n=152). Using quantitative real-time PCR with gene-specific primers and probes, all 6 antigens had detectable expression in MM bone marrow (>95% tumor). Notably, DAPK2 and PIM1 show higher expression in MM bone marrow compared to normal PBMC (p=−0.008, and 0.056, respectively; exact Wilcoxon rank sum test). To determine whether patients develop specific T cell responses against these antigens in vivo, fresh patient PBMC were stimulated ex vivo with a series of peptides derived from PIM1 and DAPK2 that were consensually predicted to be strong HLA-A2 binders by the IEDB class I, NetMHC, and MHC-I peptide energy binding prediction servers. One peptide, DAPK2156–164 (MLLDKNIPI) elicited strong interferon-gamma secretion after two stimulations consistent with a recall response to this antigen. Ongoing work will further characterize T cell responses against DAPK2 in other serologically reactive post-HSCT MM patients, and will assess T cell responses against PIM1. We conclude that antigens identified by serologic screening after syngeneic HSCT are common myeloma-associated targets in vivo and can elicit coordinated T cell responses. The outlined studies will elucidate the potential of these promising antigens as novel immunogens for targeted immunotherapy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1864-1864 ◽  
Author(s):  
Kimberly Ann Noonan ◽  
Anna Ferguson ◽  
Amy Emerling ◽  
Lakshmi Rudraraju ◽  
Carol A. Huff ◽  
...  

Abstract Abstract 1864 Poster Board I-889 Aim: In preclinical models lenalidomide has been shown to augment immune responses in vitro while the in vivo immunomodulatory properties of this drug are unknown. This clinical trial in relapsed myeloma patients examined the ability of lenalidomide to augment both endogenous as well as vaccine-specific cellular and humoral immune responses to the pneumococcal vaccine, Prevnar. Methods: Prevnar was given either before or during administration of lenalidomide in two cohorts of patients. Cohort A received their first vaccination prior to administration of lenalidomide, and the second vaccine on cycle 2, day 15 of lenalidomide. Cohort B received both vaccines after initiation of lenalidomide: cycle 2, day 15 and cycle 4, day 15. Pneumococcal serotype titres as well as CRM-197 T cell responses quantified the B and T cell responses, respectively, to Prevnar vaccination and were correlated with lenalidomide administration. Systemic immune responsiveness was determined by DTH responses to candida and by flow cytometric analysis of immune cell subsets. Results: Enrollment has been completed. 24 patients have been enrolled. 17 patients were evaluable with 10 in Cohort A and 7 in Cohort B. 7 patients with progressive disease while on study were not evaluable. All patients had measurable T cell and antibody responses to Prevnar. T cell responses to CRM-197 demonstrated significantly higher responses in Cohort B with a peak 5.8 fold-increase above baseline compared to 1.5 in Cohort A in the blood. The bone marrow T cells showed a greater response which persisted longer in Cohort B (15.5 fold to 4.5 at 6 months) vs. A (12.5 fold to 1.8 at 6 months). Trends towards better T cell responses were observed in patients with better clinical responses to lenalidomide. Vaccination primed serotype responses in both groups. While the second Prevnar vaccine in Cohort B further augmented antibody titres, no subsequent increase was observed in Cohort A. As a measure of systemic immunity, DTH responses to Candida were examined. Cohort B demonstrated up to a 78-fold increase in induration compared to no change in Cohort A. Flow cytometric analyses showed increased NK (1.2 fold) and CD8 (2.5 fold) in Cohort B… Furthermore, T cell subset analyses revealed an increase of activation markers as well as an increase in the central memory and effector memory phenotypes in both peripheral blood and bone marrow. Interestingly, greater myeloma clinical responses were observed in Cohort B (57% ORR) vs Cohort A (10%) Conclusions: This is the first in vivo demonstration of lenalidomide-mediated augmentation of both cellular and humoral responses in myeloma patients. These data suggest a synergy between the immunomodulatory effects of lenalidomide and vaccines. Surprisingly, the increased anti-tumor effect observed in Cohort B suggests the possibility of lenalidomide-induced vaccine-mediated epitope spreading. This establishes the scientific rationale for utilizing lenalidomide as an immune adjuvant with vaccines. Implications of the use of lenalidomide as a vaccine adjuvant apply to both cancer as well as infectious vaccines. Disclosures: Off Label Use: Lenalidomide as an immune potentiator. Huff:Celgene: Consultancy. Schafer:Celgene: Employment. Borrello:Celgene: Speakers Bureau; Mellenium: Consultancy.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mauro Di Pilato ◽  
Miguel Palomino-Segura ◽  
Ernesto Mejías-Pérez ◽  
Carmen E. Gómez ◽  
Andrea Rubio-Ponce ◽  
...  

AbstractNeutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known. In this study, we find that these neutrophil subtypes show distinct migratory and motility patterns and different ability to interact with CD8 T cells in the spleen following vaccinia virus (VACV) infection. Moreover, after analysis of adhesion, inflammatory, and migration markers, we observe that Nβ neutrophils overexpress the α4β1 integrin compared to Nα. Finally, by inhibiting α4β1 integrin, we increase the Nβ/Nα ratio and enhance CD8 T-cell responses to HIV VACV-delivered antigens. These findings provide significant advancements in the comprehension of neutrophil-based control of adaptive immune system and their relevance in vaccine design.


2017 ◽  
Vol 214 (9) ◽  
pp. 2563-2572 ◽  
Author(s):  
Spencer W. Stonier ◽  
Andrew S. Herbert ◽  
Ana I. Kuehne ◽  
Ariel Sobarzo ◽  
Polina Habibulin ◽  
...  

Until recently, immune responses in filovirus survivors remained poorly understood. Early studies revealed IgM and IgG responses to infection with various filoviruses, but recent outbreaks have greatly expanded our understanding of filovirus immune responses. Immune responses in survivors of Ebola virus (EBOV) and Sudan virus (SUDV) infections have provided the most insight, with T cell responses as well as detailed antibody responses having been characterized. Immune responses to Marburg virus (MARV), however, remain almost entirely uncharacterized. We report that immune responses in MARV survivors share characteristics with EBOV and SUDV infections but have some distinct differences. MARV survivors developed multivariate CD4+ T cell responses but limited CD8+ T cell responses, more in keeping with SUDV survivors than EBOV survivors. In stark contrast to SUDV survivors, rare neutralizing antibody responses in MARV survivors diminished rapidly after the outbreak. These results warrant serious consideration for any vaccine or therapeutic that seeks to be broadly protective, as different filoviruses may require different immune responses to achieve immunity.


2011 ◽  
Vol 19 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Jin Huk Choi ◽  
Joe Dekker ◽  
Stephen C. Schafer ◽  
Jobby John ◽  
Craig E. Whitfill ◽  
...  

ABSTRACTThe immune response to recombinant adenoviruses is the most significant impediment to their clinical use for immunization. We test the hypothesis that specific virus-antibody combinations dictate the type of immune response generated against the adenovirus and its transgene cassette under certain physiological conditions while minimizing vector-induced toxicity.In vitroandin vivoassays were used to characterize the transduction efficiency, the T and B cell responses to the encoded transgene, and the toxicity of 1 × 1011adenovirus particles mixed with different concentrations of neutralizing antibodies. Complexes formed at concentrations of 500 to 0.05 times the 50% neutralizing dose (ND50) elicited strong virus- and transgene-specific T cell responses. The 0.05-ND50formulation elicited measurable anti-transgene antibodies that were similar to those of virus alone (P= 0.07). This preparation also elicited very strong transgene-specific memory T cell responses (28.6 ± 5.2% proliferation versus 7.7 ± 1.4% for virus alone). Preexisting immunity significantly reduced all responses elicited by these formulations. Although lower concentrations (0.005 and 0.0005 ND50) of antibody did not improve cellular and humoral responses in naïve animals, they did promote strong cellular (0.005 ND50) and humoral (0.0005 ND50) responses in mice with preexisting immunity. Some virus-antibody complexes may improve the potency of adenovirus-based vaccines in naïve individuals, while others can sway the immune response in those with preexisting immunity. Additional studies with these and other virus-antibody ratios may be useful to predict and model the type of immune responses generated against a transgene in those with different levels of exposure to adenovirus.


Vaccines ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Muktha S. Natrajan ◽  
Nadine Rouphael ◽  
Lilin Lai ◽  
Dmitri Kazmin ◽  
Travis L. Jensen ◽  
...  

Background: Tularemia is a potential biological weapon due to its high infectivity and ease of dissemination. This study aimed to characterize the innate and adaptive responses induced by two different lots of a live attenuated tularemia vaccine and compare them to other well-characterized viral vaccine immune responses. Methods: Microarray analyses were performed on human peripheral blood mononuclear cells (PBMCs) to determine changes in transcriptional activity that correlated with changes detected by cellular phenotyping, cytokine signaling, and serological assays. Transcriptional profiles after tularemia vaccination were compared with yellow fever [YF-17D], inactivated [TIV], and live attenuated [LAIV] influenza. Results: Tularemia vaccine lots produced strong innate immune responses by Day 2 after vaccination, with an increase in monocytes, NK cells, and cytokine signaling. T cell responses peaked at Day 14. Changes in gene expression, including upregulation of STAT1, GBP1, and IFIT2, predicted tularemia-specific antibody responses. Changes in CCL20 expression positively correlated with peak CD8+ T cell responses, but negatively correlated with peak CD4+ T cell activation. Tularemia vaccines elicited gene expression signatures similar to other replicating vaccines, inducing early upregulation of interferon-inducible genes. Conclusions: A systems vaccinology approach identified that tularemia vaccines induce a strong innate immune response early after vaccination, similar to the response seen after well-studied viral vaccines, and produce unique transcriptional signatures that are strongly correlated to the induction of T cell and antibody responses.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3533-3533
Author(s):  
Mathias Witzens-Harig ◽  
Dirk Hose ◽  
Michael Hundemer ◽  
Simone Juenger ◽  
Anthony D. Ho ◽  
...  

Abstract Introduction: The bone marrow (BM) is a site of induction of tumour antigen specific T cell responses in many malignancies. We have demonstrated in the BM of myeloma patients high frequencies of spontaneously generated CD8 memory T cells with specificity for the myeloma-associated antigen MUC1, which were not detectable in the peripheral blood (PB). Besides MUC1, carcinoembryonic antigen was recently identified as a tumour-associated antigen in a patient with multiple myeloma. Up to now, spontaneous CD4 T cell responses against myeloma-associated antigens have not been reported. We undertook this study to evaluate to what extent spontaneous CD4 T cell responses against myeloma antigens occur during myeloma progression and if MUC1 or carcinoembryonic antigen represent immunogenic targets of spontaneous CD4 and CD8 T cell responses. Methods: Altogether, 78 patients with multiple myeloma were included into the study. Presence of functionally competent antigen specific T cells was evaluated by ex vivo short term (40 h) IFN-γ Elispot analyses. CD4 T cell responses against MUC1 were assessed by stimulation of purified CD4 T cell fractions with antigen pulsed, autologous dendritic cells (DCs) pulsed with two synthetic 100 meric polypeptides (pp1-100ss and (137–157)5 tr) that can be processed and presented via multiple HLA-II alleles. CD4- or CD8 T cell reactivity against carcinoembryonic antigen was assessed on purified CD4- and CD8 T cell fractions by pulsing DCs with highly purified CEA derived from culture supernatants of an epithelial carcinoma cell line. CD8 responses against MUC1 were analyzed by stimulation of HLA-A2+ patients derived purified T cells with DCs loaded with HLA-A2 restricted MUC1-derived nonameric peptide LLLLTVLTV. As negative control antigen for MUC1 polypeptides and CEA human IgG was used for pulsing DCs at identical concentrations while HLA-A2-restricted peptide SLYNTVATL derived from HIV was used as control antigen for LLLLTVLTV. Test antigen specific reactivity was defined by significantly increased numbers of IFN-γ spots in triplicate test wells compared to control wells (p<0.05, students T test). Results: 8 out of 19 tested patients (42%) contained MUC1 specific CD8 T cells in their bone marrow, while MUC1 specific CD4 T cells were detected in the BM of 30% of the cases (3/10). Interestingly, in peripheral blood (PB) CD8 reactivity against MUC1 was detectable in only 1 out of 10 patients while CD4 reactivity in PB was not detectable at all (0/10). CEA was specifically recognized by BM CD8 T cells from 5 out of 30 patients (17%) and by BM CD4 T cells from 5 out of 18 patients (28%). CEA was not recognized by CD4 and CD8 T cells in the PB of the same patients (0/13). Conclusion: Spontaneous T helper responses against tumour-associated antigens occur in the BM at similar levels as antigen specific CD8 T cells responses while they are virtually undetectable in the PB. Compared to CEA, MUC1 induces CD8 T cell responses in a much higher proportion of myeloma patients. Nevertheless, our data suggest that CEA may trigger spontaneous T cell responses against multiple myeloma in a considerable number of patients. Thus, systematic functional analyses of this potential tumour antigen in multiple myeloma appears to be justified.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3671-3671
Author(s):  
Jochen Greiner ◽  
Susanne Hofmann ◽  
Krzysztof Giannopoulos ◽  
Markus Rojewski ◽  
Anna Babiak ◽  
...  

Abstract Abstract 3671 Poster Board III-607 For effective elimination of malignant cells by specific T cells a co-activation of CD4- and CD8-positive T cells might be important. We performed two RHAMM-R3 peptide vaccination trials using 300μg and 1000μg for patients with AML, MDS and multiple myeloma overexpressing RHAMM. Similar mild toxicity of both cohorts was found, only mild drug-related adverse events were observed such as erythema and induration of the skin. In the 300μg cohort we detected in 7/10 (70 %) patients specific immune responses and also positive clinical effects in 5/10 (50 %) patients. In the high dose peptide vaccination trial (1000μg peptide) 4/9 (44 %) patients showed positive immune responses. These patients showed an increase of CD8+RHAMM-R3 tetramer+/CD45RA+/CCR7-/CD27-/CD28- effector T cells and an increase of R3-specific CD8+ T cells. In the higher peptide dose cohort three patients showed positive clinical effects. However, higher doses of peptide do not improve the frequency and intensity of immune responses in this clinical trial and might induce immune tolerance. In this work, we investigated the co-existence of serological immune responses against RHAMM detected by a RHAMM-specific ELISA of patients with AML, MDS and multiple myeloma treated in these two peptide vaccination trials. We correlated these results to specific T cell responses of CD8-positive T cells measured by ELISpot assays for interferon gamma and Granzyme B, tetramer staining and chromium release assays. Moreover, these results were compared to the frequency of regulatory T cells. 4/19 patients have a positive serological immune response in ELISA assay, all of these patients developed also strong specific CD8-positive T cell responses during peptide vaccination detected by ELISpot assays and tetramer staining. As expected, peptide vaccination did not result in the induction of humoral immune responses. In further ELISA assays we measured IL-2 and IL-10 levels in the sera of the patients before and three weeks after four vaccinations. While IL-10 levels remained at a rather low level over the time of vaccination, we detected an increase of IL-2 up to the five-fold of the initial levels in four of ten patients. Moreover, we performed a proteome array to detect cytokine and chemokine regulation in sera of patients vaccinated in these two trials during and after RHAMM-R3 peptide vaccination. 36 cytokines, chemokines and acute phase proteins were measured and both cohorts vaccinated with different peptide doses were compared. Taken together, RHAMM-R3 peptide vaccination induced both immunological and clinical responses. Co-existence of immune responses of CD4-positive T cells against the target RHAMM seems to be important for an induction of strong immune responses of CD8-positive T cells. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document