scholarly journals Quantitative studies on T cell diversity. III. Limiting dilution analysis of precursor cells for T helper cells reactive to xenogeneic erythrocytes.

1982 ◽  
Vol 156 (6) ◽  
pp. 1587-1603 ◽  
Author(s):  
I Melchers ◽  
K Fey ◽  
K Eichmann

Splenic T cells exposed to concanavalin A (Con A), and subsequently to factors produced by rat spleen cells in response to Con A (Con A sup), acquire the ability to function as helper T (TH) cells in response to xenogeneic erythrocytes (RBC). Help is measured as the reconstitution of the plaque-forming cell response of a spleen cell population depleted of T cells by treatment with anti-Thy-1 serum and complement. We propose that precursor TH cells differentiate during the in vitro treatment into mature TH cells. As differentiation occurs under limiting dilution conditions, an estimation of the precursor frequency should in principle be possible. However, a single-hit Poisson distribution does not fit our data. Instead, we observe, dependent on the T cell concentration, three separate "peaks" of response. In many experiments, using sheep, horse, and chicken RBC as antigens, we reproducibly find these "peaks" at 40-190, 600-3,000, and 20,000-100,000 T cells, placed into limiting dilution cultures, respectively. By various experiments we can show that the helper activity is not due to passively transferred rat factors, but to the titrated cells themselves. The active cell is a T cell that appears to function in an antigen-specific way and to require direct cell contact to do so. It thus resembles the classical helper T cell. As we find precursor TH cells already at very low concentrations of T cells, we titrated the range between 0 and 100 T cells/well carefully. The bent shape of the titration curves does not always allow a statistically satisfying regression analysis, and we therefore cannot estimate precise precursor frequencies from every experiment. However, a common sense argument can be made that these frequencies must be on the order of 1/10-1/100 T cells. We propose that the limiting dilution curves obtained in this system most likely reflect fundamentally important cellular interactions that regulate immunological effector functions. We favor a concept of independently interacting sets of helper and suppressor T cells of various frequencies, but other models are possible.

1981 ◽  
Vol 153 (4) ◽  
pp. 857-870 ◽  
Author(s):  
J Goronzy ◽  
U Schaefer ◽  
K Eichmann ◽  
M M Simon

Two different limiting dilution systems have been applied to compare precursor frequencies of alloreactive cytotoxic T cells (CTL-P) in the polyclonally and specifically activated lymphocyte populations and in selected Lyt T cell subsets. Both systems make use of T cell growth factor for T cell expansion but differ with respect to the activation step in that lymphocytes are either activated directly with allogenetic stimulator cells or are sensitized polyclonally with concanavalin A (Con A) in bulk culture before their expansion under limiting dilution conditions. In polyclonally activated C57BL/6 lymphocyte populations, two types of CTL-P specific for H-2d alloantigens could be identified: a frequent set with a frequency of 1/100-1/300, and a rare set with a frequency of 1/2,000-1/8,000. In contrast, only a single CTL-P set was found in specifically activated populations with a frequency similar to that of the frequent CTL-P found on Con A blasts. In Con A blasts, the frequent at higher cell concentrations by suppressor T cells, whereas rare CTL-P were insensitive to this suppressive mechanism. Whereas in specifically activated T cells, the predominant CTL-P phenotype was Lyt-123, the predominant Lyt phenotypes for the frequent and the rare CTL-P found in Con A blasts were Lyt-123 and Lyt-123, respectively, which suggests that they represent primary and secondary CTL-P, respectively. The results are discussed with respect to previous reports on the involvement of Lyt T cell subsets in the generation of cytotoxic responses and their regulation by T suppressor cells.


Blood ◽  
1982 ◽  
Vol 59 (2) ◽  
pp. 233-235 ◽  
Author(s):  
B Wenz ◽  
A Rubinstein

Abstract A patient with acquired agammaglobulinemia was treated with plasmapheresis. The rationale for this procedure was based on the presence of a cytotoxic autoantibody with specificity for helper (TH2-) T lymphocytes. Plasmapheresis reduced the autoantibody concentration to undetectable levels, which resulted in an increase number of helper T cells. These T cells provided normal in vitro helper activity. Plasmapheresis did not correct a concomitant suppressor T-cell defect, and the clinical remission ended during the fifth month of exchange therapy.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Chen ◽  
Xianying Fang ◽  
Yuan Gao ◽  
Ke Shi ◽  
Lijun Sun ◽  
...  

Abstract Background T lymphocytes play an important role in contact hypersensitivity. This study aims to explore the immunosuppressive activity of SBF-1, an analog of saponin OSW-1, against T lymphocytes in vitro and in vivo. Methods Proliferation of T lymphocytes from lymph nodes of mice was determined by MTT assay. Flow cytometry analysis was performed to assess T cell activation and apoptosis. Levels of cytokines were determined by PCR and ELISA. BALB/c mice were sensitized and challenged with picryl chloride and thickness of left and right ears were measured. Results SBF-1 effectively inhibited T lymphocytes proliferation induced by concanavalin A (Con A) or anti-CD3 plus anti-CD28 at a very low dose (10 nM) but exhibited little toxicity in non-activated T lymphocytes at concentrations up to 10 μM. In addition, SBF-1 inhibited the expression of CD25 and CD69, as well as he phosphorylation of AKT in Con A-activated T cells. SBF-1 also induced apoptosis of activated T cells. In addition, SBF-1 also downregulated the induction of the T cell cytokines, IL-2 and IFN-γ in a dose-dependent manner. Furthermore, SBF-1 significantly suppressed ear swelling and inflammation in a mouse model of picryl chloride-induced contact hypersensitivity. Conclusions Our findings suggest that SBF-1 has an unique immunosuppressive activity both in vitro and in vivo mainly through inhibiting T cell proliferation and activation. Its mechanism appears to be related to the blockage of AKT signaling pathway.


1996 ◽  
Vol 183 (3) ◽  
pp. 801-810 ◽  
Author(s):  
N D Griggs ◽  
S S Agersborg ◽  
R J Noelle ◽  
J A Ledbetter ◽  
P S Linsley ◽  
...  

The zona pellucida (ZP), an ovarian extracellular structure, contains three major glycoproteins: ZP1, ZP2, and ZP3. A ZP3 peptide contains both an autoimmune oophoritis-inducing T cell epitope and a B cell epitope that induces autoantibody to ZP. This study investigates two major T cell costimulation pathways in this disease model. Herein we show that blockage of glycoprotein (gp)39 and CD40 interaction with gp39 monoclonal antibody (mAb) results in the failure to induce both autoimmune oophoritis and autoantibody production. Inhibition of ligand binding to the CD28 receptor with the fusion protein, murine CTLA4-immunoglobulin (Ig), also results in failure to generate antibody to ZP and significantly reduces disease severity and prevalence. Surprisingly, the frequencies of antigen-specific T cells in anti-gp39 mAb-treated mice, CTLA4-Ig treated mice, and in mice given control hamster IgG or control fusion protein L6, were equivalent as determined by limiting dilution analysis (approximately equals 1:5,000). These T cells, which produced comparable amounts of interleukin 4 and interferon gamma in vitro, were able to transfer oophoritis to normal recipients. When anti-gp39 mAb and CTLA4-Ig were given together, the effect was additive, leading to inhibition of T cell activation as determined by in vitro proliferation and limiting dilution analysis (approximately equals 1:190,000); disease and antibody responses were absent in these mice. By studying these two costimulatory pathways in parallel, we have shown that autoimmune disease and autoantibody production are inhibitable by blocking either the gp39 or the CD28 pathway, whereas inhibition of clonal expansion of the effector T cell population occurs only when both pathways are blocked.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3514-3514
Author(s):  
Yong Chan Kim ◽  
Ai-Hong Zhang ◽  
Jeong Heon Yoon ◽  
David William Scott

Abstract Expanded antigen-specific engineered regulatory T cells (Tregs) have been proposed for potential clinical application for the treatment of undesirable immune responses, such as inhibitor responses in hemophilia A patients and autoimmune diseases. By providing an antigen-specific T-cell receptor (TCR) to polyclonal natural Tregs, we suggested that antigen-specific engineered Tregs would migrate specifically to particular target tissues and induce antigen-specific immune tolerance in the local milieu. Previously, we developed FVIII C2-specific Tregs using a long-term stabilization protocol in vitro and demonstrated that these stabilized engineered Tregs successfully modulated FVIII-specific T-cell- and B-cell immune responses. Herein, we examined the mechanism of suppression by antigen-specific engineered Tregs compared to polyclonal normal natural Tregs. Initially, we tested whether these FVIII-specific engineered Tregs were able to suppress neighboring activated T-cell effectors locally. We found that FVIII C2-specific Tregs strongly suppressed myelin basic protein (MBP)-specific T effectors by presentation of both specific antigens in same APC population. However, we also observed that C2-specific Tregs could suppress MBP-specific T effectors presented on different APCs. These results imply contactless suppressive function of C2-specific engineered Tregs. Using a modified trans-well suppression assay, in which physical distance and clear separation between Tregs and a set of T effectors was created, we found that C2-specific activated Tregs showed significant contactless suppression only when T effectors were also present. In addition, and confirming previous studies with polyclonal Tregs, suppression by FVIII-specific engineered Tregs could be overcome by increasing the dose of IL-2 in co-culture media. This suggests that Tregs act, in part, by usurping IL-2 needed by T effectors to proliferate. Surprisingly, neutralization of CTLA-4 did not interfere with FVIII C2-specific suppression of engineered Tregs in contrast to the reversal seen with anti-CD3e-driven non-specific immunosuppression. Our data strongly suggest that suppressive function of FVIII-specific engineered Tregs is not restricted to cell-to-cell contact. Rather cross-talk of engineered Tregs and T effectors potentially generate a contactless suppressive mechanism to suppress other FVIII-specific multiple effector cells in the local milieu for effective immune tolerance. Understanding the mechanism of contactless suppression mechanism should provide critical clues to develop more effective engineered Tregs as a therapeutic tool in hemophilia A. (Supported by NIH grants HL061883 and HL126727) Disclosures Kim: Henry Jackson Foundation: Other: patent filed. Zhang:Henry Jackson Foundation: Other: patent filed. Scott:Henry Jackson Foundation: Other: patent filed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Danielle Minns ◽  
Katie J. Smith ◽  
Gareth Hardisty ◽  
Adriano G. Rossi ◽  
Emily Gwyer Findlay

Neutrophils and T cells exist in close proximity in lymph nodes and inflamed tissues during health and disease. They are able to form stable interactions, with profound effects on the phenotype and function of the T cells. However, the outcome of these effects are frequently contradictory; in some systems neutrophils suppress T cell proliferation, in others they are activatory or present antigen directly. Published protocols modelling these interactions in vitro do not reflect the full range of interactions found in vivo; they do not examine how activated and naïve T cells differentially respond to neutrophils, or whether de-granulating or resting neutrophils induce different outcomes. Here, we established a culture protocol to ask these questions with human T cells and autologous neutrophils. We find that resting neutrophils suppress T cell proliferation, activation and cytokine production but that de-granulating neutrophils do not, and neutrophil-released intracellular contents enhance proliferation. Strikingly, we also demonstrate that T cells early in the activation process are susceptible to suppression by neutrophils, while later-stage T cells are not, and naïve T cells do not respond at all. Our protocol therefore allows nuanced analysis of the outcome of interaction of these cells and may explain the contradictory results observed previously.


1994 ◽  
Vol 179 (2) ◽  
pp. 425-438 ◽  
Author(s):  
M P Cooke ◽  
A W Heath ◽  
K M Shokat ◽  
Y Zeng ◽  
F D Finkelman ◽  
...  

The specificity of antibody (Ab) responses depends on focusing helper T (Th) lymphocyte signals to suitable B lymphocytes capable of binding foreign antigens (Ags), and away from nonspecific or self-reactive B cells. To investigate the molecular mechanisms that prevent the activation of self-reactive B lymphocytes, the activation requirements of B cells specific for the Ag hen egg lysozyme (HEL) obtained from immunoglobulin (Ig)-transgenic mice were compared with those of functionally tolerant B cells isolated from Ig-transgenic mice which also express soluble HEL. To eliminate the need for surface (s)Ig-mediated Ag uptake and presentation and allow the effects of sIg signaling to be studied in isolation, we assessed the ability of allogeneic T cells from bm12 strain mice to provide in vivo help to C57BL/6 strain-transgenic B cells. Interestingly, non-tolerant Ig-transgenic B cells required both allogeneic Th cells and binding of soluble HEL for efficient activation and Ab production. By contrast, tolerant self-reactive B cells from Ig/HEL double transgenic mice responded poorly to the same combination of allogeneic T cells and soluble HEL. The tolerant B cells were nevertheless normally responsive to stimulation with interleukin 4 and anti-CD40 Abs in vitro, suggesting that they retained the capacity to respond to mediators of T cell help. However, the tolerant B cells exhibited a proximal block in the sIg signaling pathway which prevented activation of receptor-associated tyrosine kinases in response to the binding of soluble HEL. The functional significance of this sIg signaling defect was confirmed by using a more potent membrane-bound form of HEL capable of triggering sIg signaling in tolerant B cells, which markedly restored their ability to collaborate with allogeneic Th cells and produce Ab. These findings indicate that Ag-specific B cells require two signals for mounting a T cell-dependent Ab response and identify regulation of sIg signaling as a mechanism for controlling self-reactive B cells.


1972 ◽  
Vol 136 (1) ◽  
pp. 49-67 ◽  
Author(s):  
Marc Feldmann ◽  
Antony Basten

Tissue cultures with two compartments, separated by a cell impermeable nuclepore membrane (1 µ pore size), were used to investigate the mechanism of T-B lymphocyte cooperation. It was found that collaboration was as effective when the T and B lymphocyte populations were separated by the membrane as when they were mixed together. Critical tests were performed to verify that the membranes used were in fact cell impermeable. The specificity of the augmentation of the B cell response by various T cell populations was investigated. Only the response of B cells reactive to determinants on the same molecule as recognized by the T cells was augmented markedly. Specific activation of thymocytes by antigen was necessary for efficient collaboration across the membrane. The response of both unprimed and hapten-primed spleen cells was augmented by the T cell "factor" although, as expected, hapten-primed cells yielded greater responses. The T cell factor acted as efficiently if T cells were present or absent in the lower chamber. Thus the site of action of the T cell factor was not on other T cells, but was either on macrophages or the B cells themselves. The T cell-specific immunizing factor did not pass through dialysis membranes. The experiments reported here help rule out some of the possible theories of T-B cell collaboration. Clearly T-B cell contact was not necessary for successful cooperation to occur in this system. Possible theoretical interpretations of the results and their bearing on the detailed mechanism of T-B lymphocyte cooperation are discussed.


1993 ◽  
Vol 178 (1) ◽  
pp. 87-99 ◽  
Author(s):  
M J Rapoport ◽  
A Jaramillo ◽  
D Zipris ◽  
A H Lazarus ◽  
D V Serreze ◽  
...  

Beginning at the time of insulitis (7 wk of age), CD4+ and CD8+ mature thymocytes from nonobese diabetic (NOD) mice exhibit a proliferative unresponsiveness in vitro after T cell receptor (TCR) crosslinking. This unresponsiveness does not result from either insulitis or thymic involution and is long lasting, i.e., persists until diabetes onset (24 wk of age). We previously proposed that it represents a form of thymic T cell anergy that predisposes to diabetes onset. This hypothesis was tested in the present study by further investigating the mechanism responsible for NOD thymic T cell proliferative unresponsiveness and determining whether reversal of this unresponsiveness protects NOD mice from diabetes. Interleukin 4 (IL-4) secretion by thymocytes from > 7-wk-old NOD mice was virtually undetectable after treatment with either anti-TCR alpha/beta, anti-CD3, or Concanavalin A (Con A) compared with those by thymocytes from age- and sex-matched control BALB/c mice stimulated under identical conditions. NOD thymocytes stimulated by anti-TCR alpha/beta or anti-CD3 secreted less IL-2 than did similarly activated BALB/c thymocytes. However, since equivalent levels of IL-3 were secreted by Con A-activated NOD and BALB/c thymocytes, the unresponsiveness of NOD thymic T cells does not appear to be dependent on reduced IL-2 secretion. The surface density and dissociation constant of the high affinity IL-2 receptor of Con A-activated thymocytes from both strains are also similar. The patterns of unresponsiveness and lymphokine secretion seen in anti-TCR/CD3-activated NOD thymic T cells were also observed in activated NOD peripheral spleen T cells. Exogenous recombinant (r)IL-2 only partially reverses NOD thymocyte proliferative unresponsiveness to anti-CD3, and this is mediated by the inability of IL-2 to stimulate a complete IL-4 secretion response. In contrast, exogenous IL-4 reverses the unresponsiveness of both NOD thymic and peripheral T cells completely, and this is associated with the complete restoration of an IL-2 secretion response. Furthermore, the in vivo administration of rIL-4 to prediabetic NOD mice protects them from diabetes. Thus, the ability of rIL-4 to reverse completely the NOD thymic and peripheral T cell proliferative defect in vitro and protect against diabetes in vivo provides further support for a causal relationship between this T cell proliferative unresponsiveness and susceptibility to diabetes in NOD mice.


1993 ◽  
Vol 177 (5) ◽  
pp. 1367-1381 ◽  
Author(s):  
C Mohan ◽  
S Adams ◽  
V Stanik ◽  
S K Datta

Only a fraction (12%) of 268 "autoreactive" T cell clones derived from lupus-prone mice can selectively induce the production of pathogenic anti-DNA autoantibodies in vitro and accelerate the development of lupus nephritis when transferred in vivo. The CDR3 loops of T cell receptor beta chains expressed by these pathogenic T helper (Th) clones contain a recurrent motif of anionic residues suggesting that they are selected by autoantigens with cationic residues. Herein, we found that approximately 50% of these pathogenic Th clones were specific for nucleosomal antigens, but none of them responded to cationic idiopeptides shared by variable regions of pathogenic anti-DNA autoantibodies. Nucleosomes did not stimulate the T cells as a nonspecific mitogen or superantigen. Only the pathogenic Th cells of lupus responded to nucleosomal antigens that were processed and presented via the major histocompatibility class II pathway. Although the presentation of purified mononucleosomes to the Th clones could be blocked by inhibitors of endosomal proteases, neither of the two components of the nucleosomes--free DNA or histones by themselves--could stimulate the Th clones. Thus critical peptide epitopes for the Th cells were probably protected during uptake and processing of the nucleosome particle as a whole. The nucleosome-specific Th clones preferentially augmented the production of IgG autoantibodies to histone-DNA complex in vitro. In vivo, nucleosome-specific, CD4+ T cells were not detectable in normal mice, but they were found in the spleens of lupus-prone mice as early as 1 mo of age, long before other autoimmune manifestations. Immunization of young, preautoimmune lupus mice with nucleosomes augmented the production of autoantibodies and markedly accelerated the development of severe glomerulonephritis. Previously, crude preparations containing nucleosomes were shown by others to have polyclonal mitogenic activity for B cells from normal as well as lupus mice. Identification here of pure mononucleosome as a lupus-specific immunogen for the Th cells that selectively help the pathogenic anti-DNA autoantibody producing B cells of lupus could lead to the design of specific therapy against this pathogenic autoimmune response.


Sign in / Sign up

Export Citation Format

Share Document