scholarly journals Expression of T cell receptor genes in human B cells.

1986 ◽  
Vol 164 (6) ◽  
pp. 1940-1957 ◽  
Author(s):  
A F Calman ◽  
B M Peterlin

We analyzed the transcription and rearrangement of the T cell antigen receptor (Ti) genes Ti alpha and Ti beta in human B cell, T cell, and myeloid cell lines, as well as in purified tonsillar B and T cells. All four B cell lines examined, as well as one of two myeloid cell lines, expressed low levels of truncated Ti beta transcripts, as did freshly purified tonsillar B cells. Two of the B cell lines and one of the myeloid lines also expressed truncated Ti alpha transcripts, while tonsillar B cells did not. Sequence analysis of cDNA clones from a B cell line demonstrated that these truncated Ti alpha and Ti beta transcripts were composed of unrearranged J and C gene segments. Comparison of cDNA clones from T and B cells suggests that D alpha genes or N regions contribute to the formation of Ti alpha transcripts in T cells but not in B cells. None of the B cell or myeloid cell lines in this study showed evidence of Ti beta gene rearrangements by Southern blotting. Our data, and other studies of gene rearrangements in human tumors, demonstrate that the level of Ti beta transcriptional activity and the frequency of Ti beta gene rearrangements are correlated in all cell types examined. Thus, our data support the accessibility model of antigen receptor gene rearrangement, whereby the susceptibility of gene segments to recombination enzymes is correlated with their transcriptional activity.

1983 ◽  
Vol 158 (6) ◽  
pp. 2024-2039 ◽  
Author(s):  
M Howard ◽  
L Matis ◽  
T R Malek ◽  
E Shevach ◽  
W Kell ◽  
...  

Antigen-activated T lymphocytes produce within 24 h of stimulation a factor that is indistinguishable biochemically and functionally from the B cell co-stimulating growth factor, BCGF-I, originally identified in induced EL4 supernatants: Supernatants from antigen-stimulated T cell lines are not directly mitogenic for resting B cells, but synergize in an H-2-unrestricted manner with anti-Ig activated B cells to produce polyclonal proliferation but not antibody-forming-cell development; biochemical studies reveal the B cell co-stimulating factor present in antigen-stimulated T cell line supernatants is identical by phenyl Sepharose chromatography and isoelectric focusing (IEF) to EL4 supernatant BCGF-I. We thus conclude that normal T cells produce BCGF-I in response to antigenic stimulation. Analysis of the mechanism of BCGF-I production by antigen-stimulated T cells showed that optimum amounts of BCGF-I were obtained as quickly as 24 h post-stimulation, and that the factor producing cells in the T cell line investigated bore the Lyt-1+2- phenotype. As few as 10(4) T cells produced sufficient BCGF-I to support the proliferation of 5 X 10(4) purified anti-Ig activated B cells. Finally, the activation of normal T cell lines to produce BCGF-I required either antigen presented in the context of syngeneic antigen-presenting cells (APC) or interleukin 2 (IL-2).


1979 ◽  
Vol 149 (6) ◽  
pp. 1424-1437 ◽  
Author(s):  
C Y Wang ◽  
S M Fu ◽  
H G Kunkel

A major membrane glycoprotein with mol wt of approximately 54,000 has been isolated from membrane preparations of B-type lymphoid cell lines. Antiserum prepared against the isolated material specifically precipitated this glycoprotein from membranes labeled by surface radioiodination or by metabolic labeling. This antiserum was shown by complement-mediated cytotoxicity assay, membrane immunofluorescent staining, and by quantitative absorption analysis to react preferentially with certain B-lymphoblastoid cell lines, with a minor population of peripheral blood B lymphocytes, and a major population of tonsillar B lymphocytes. Certain B-cell leukemias also expressed the antigen, whereas others did not. Considerable variability was observed among positive B cells in the intensity of fluorescent staining even among the leukemic cells from a single individual. Although T cells, including T cells, were negative by direct immunofluorescent and cytotoxicity assay, evidence for low levels of the antigen on the cells of T cell lines was obtained. The whole specific antiserum and its F(ab')2 fragments stimulated B lymphocytes to proliferate. This proliferation did not produce differentiation to plasma cells and was T-cell independent. The monovalent Fab fragments had no effect. None of these preparations timulated T cells. The possibility that this antigen, termed gp54, may play some role in B-cell activation is discussed.


2001 ◽  
Vol 75 (8) ◽  
pp. 3740-3752 ◽  
Author(s):  
Sarah Nikiforow ◽  
Kim Bottomly ◽  
George Miller

ABSTRACT In immunodeficient hosts, Epstein-Barr virus (EBV) often induces extensive B-cell lymphoproliferative disease and lymphoma. Without effective in vitro immune surveillance, B cells infected by the virus readily form immortalized cell lines. In the regression assay, memory T cells inhibit the formation of foci of EBV-transformed B cells that follows recent in vitro infection by EBV. No one has yet addressed which T cell regulates the early proliferative phase of B cells newly infected by EBV. Using new quantitative methods, we analyzed T-cell surveillance of EBV-mediated B-cell proliferation. We found that CD4+ T cells play a significant role in limiting proliferation of newly infected, activated CD23+ B cells. In the absence of T cells, EBV-infected CD23+ B cells divided rapidly during the first 3 weeks after infection. Removal of CD4+ but not CD8+ T cells also abrogated immune control. Purified CD4+ T cells eliminated outgrowth when added to EBV-infected B cells. Thus, unlike the killing of EBV-infected lymphoblastoid cell lines, in which CD8+ cytolytic T cells play an essential role, prevention of early-phase EBV-induced B-cell proliferation requires CD4+ effector T cells.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 3600-3600
Author(s):  
J. P. Sharman ◽  
J. Irish ◽  
G. Coffey ◽  
D. Czerwinski ◽  
Y. Hitoshi ◽  
...  

3600 Background: B-Cells require constitutive signaling from the B-Cell Receptor (BCR). Elimination of the BCR induces cell death. Since the BCR lacks enzymatic activity and relies upon the non-receptor tyrosine kinase Syk to initiate a signal transduction cascade, we hypothesized that R406; a small molecule Syk kinase inhibitor might eliminate the constitutive BCR signal and therefore have selective cytotoxicity for B-cells. Methods: Signal transduction changes were evaluated in cell lines and primary normal B-Cells via western blotting and phosphoflow cytometry. Effects on B-Cell, T-Cell, and Myeloid lineage cell lines were evaluated by 3H-thymidine proliferation assays, BRDU cell cycle analysis, and Annexin-V staining. Primary tumor samples were evaluated for B-Cell selective toxicity by evaluation of active caspase activity. Results: In cell culture R406 significantly alters the basal phosphorylation status of multiple proteins. Proliferation of B-Cell lines is reduced with an IC50 range of 625nM to 2.5uM without effect on T-Cell or Myeloid lineage cell lines. Cell cycle analysis reveals a reduction in B-Cell S-Phase with increase in G1/G0. Apoptosis is also increased in the B-cell lines without significant increase in the non-B cell lines. Primary normal B-Cells show reduced phosphorylation of BTK, Erk, and p38 in response to BCR cross linking. Primary tumor samples reveal activity against B-Cell neoplasms. In samples containing both malignant B-Cells and normal T-Cells, the induction of active caspase-3 is restricted to the malignant B-Cell population. Conclusions: 1) R406 alters signal transduction in B-Cells. 2) R406 demonstrates selective anti-B-Cell activity among cell lines. 3) Primary tumor samples reveal cytotoxic activity against malignant B-Cells without toxicity to T-Cells within the same specimen. 4) This compound has been safely tested in humans for non-malignant diseases with an appropriate pharmacokinetic profile; therefore these results support the initiation of an upcoming multicenter phase I/II clinical trial in patients with lymphoma. No significant financial relationships to disclose.


1983 ◽  
Vol 157 (2) ◽  
pp. 433-450 ◽  
Author(s):  
H Kawanishi ◽  
LE Saltzman ◽  
W Strober

To explore mechanisms of T cell regulation governing mucosal IgA immune response, concanavalin A-induced cloned T cell lines from Peyer's patches (PP) as well as spleen were established. The cloned cell lines expressed Thy- 1.2(+), Lyt-l(+)2(-) and were radioresistant (1,500 rad). The capacity of the cloned T cells to regulate Ig synthesis was determined by measuring their effect on lipopolysaccharide (LPS)-induced polyclonal Ig synthesis by PP B cells. In initial studies Ig secreted by B cells was determined by double antibody radioimmunoassay. LPS in the absence of cloned T cells induced abundant amounts of IgM (average 8,860 ng/2 × 10(5) B cells) and IgG (average 1,190 ng/2 × 10(5) B cells), but little or no IgA. The addition of PP cloned T cells markedly suppressed production of IgM (88 percent at the highest T/B cell ratio, 4:1), but the addition of spleen cloned T cells suppressed only a little or not at all. IgG production was inhibited by both PP and spleen T clone cells (70 percent at the 4:1 T/B ratio), wheras IgA synthesis was enhanced by both clones, but only to a limited degree. In subsequent studies the expression of class-specific surface Ig (sIg) and cytoplasmic Ig (cIg) on/in unseparated PP B cells as well as Ig class- specific PP B cells and spleen B cells during culture with or without the cloned T cells was determined by immunofluorescence. The major findings were as follows: (a) Compared with unseparated B cell cultures and cultures of purified sIgM B cells derived from PP containing LPS alone, cultures containing LPS and PP cloned T cells showed a marked decrease in cIgM-, sIgG-, and cIgG-expressing cells that was accompanied by a striking increase in sIgA-bearing, but not cIgA-containing, cells. In contrast, unseparated B cell cultures and cultures of purified sIgM B cells derived from PP containing LPS and spleen cloned T cells did not show any increase in sIgA- bearing cells. (b) Compared with purified sIgG-bearing PP B cell cultures containing LPS alone, purified sIgG-bearing PP B cell cultures containing both LPS and PP cloned T cells showed no substantial change in sIgG- or cIgG- expressing cells, and no sIgA- or cIgA- expressing cells appeared. (c) Compared with sIgA-bearing PP B cell cultures containing LPS alone, purified sIgA-bearing PP B cell cultures containing both LPS and PP cloned T cells showed no increased proliferation, and cIgA cells did not occur. Cultures of purified sIgM B cells derived from spleen containing LPS and PP cloned T cells showed qualitatively similar changes. From these results we conclude that PP cloned T cells induced class-specific switching from sIgM- to sIgA- bearing B cells, whereas spleen cloned T cells lacked this property, although they may have induced an IgM {arrow} IgG or intersubclass IgG switch. These processes seem to be in part tissue dependent. Furthermore, the PP switch T cells appear to operate as true switch cells, which govern the pathway of DNA recombination events, rather than as classical helper cells, which act to expand already differentiated cells. Finally, these switch T cells probably account for the fact that PP are an important source of IgA B cells and also a major site of IgA heavy chain class switching during gut-associated mucosal B cell proliferation and differentation.


1997 ◽  
Vol 322 (3) ◽  
pp. 919-925 ◽  
Author(s):  
Vanessa C. TAYLOR ◽  
Martin SIMS ◽  
Sara BRETT ◽  
Mark C. FIELD

The CD52 antigen is a lymphocyte glycoprotein with an extremely short polypeptide backbone and a single N-linked glycan, and it is attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. Treatment of rheumatoid arthritis patients with CAMPATH-1H, a humanized monoclonal antibody against CD52, resulted, in a small number of cases, in the appearance and persistence of CD52-negative T cells. Similarly, CD52-negative B cells emerged following in vitro treatment of a CD52-positive human B cell line with CAMPATH-1H. Both the B and T CD52-negative cells were also found to be defective in surface expression of other GPI-anchored proteins. Biochemical analysis revealed a severe defect in the synthesis of a mature GPI precursor in both the B and T cell lines. Therefore the phenotype of these CD52-negative B and T cells closely resembles that of lymphocytes from patients with paroxysmal nocturnal haemoglobinuria (PNH), in which the first step of the GPI-biosynthetic pathway, i.e. synthesis of GlcNAc-phosphatidylinositol, is blocked. In all cases studied to date, this defect maps to a mutation of the phosphatidylinositolglycan class A (PIG-A) structural gene. We therefore amplified the PIG-A gene from both the GPI-negative B and T cells by PCR and determined the nucleotide sequence. No differences from the wild-type sequence were detected; therefore a classical PNH mutation cannot be responsible for the GPI-biosynthesis defect in these cell lines. Significantly, the GPI-negative phenotype of the B cells was reversible upon separation of the positive and negative cells, resulting in a redistribution to a mixed population with either CD52-positive or -negative cells, whereas populations of 100% CD52-negative T cells were stably maintained during culture. Therefore, whereas the GPI-biosynthesis deficiency in the T cell lines may be due to a mutation in another gene required by the GPI-biosynthetic pathway, the reversible nature of this block in the B cell lines suggests a less direct cause, possibly an alteration in a regulatory factor. Overall, these data demonstrate that the PNH phenotype can be generated without a mutation in the PIG-A structural gene, and thereby identify a novel mechanism for the development of GPI deficiency.


1986 ◽  
Vol 164 (2) ◽  
pp. 580-593 ◽  
Author(s):  
R Fernandez-Botran ◽  
P H Krammer ◽  
T Diamantstein ◽  
J W Uhr ◽  
E S Vitetta

T cell-derived supernatants (SN) that contain B cell-stimulatory factor 1 (BSF-1) and lack IL-2 promote the growth of the IL-2-dependent T cell line, HT-2, as well as three other clones or lines of T cells that can provide help to B cells. The BSF-1 purified from these SNs promotes growth of HT-2 cells approximately 50% as effectively as purified IL-2. A potential involvement for contaminating IL-2 in the BSF-1 preparations was excluded by the demonstration that anti-BSF-1 mAbs blocked the BSF-1-induced growth of HT-2 cells; in contrast, these antibodies did not block the IL-2-induced proliferation of the HT-2 cells. In addition, anti-IL-2 mAbs or anti-IL-2-R antibodies blocked the HT-2 growth-promoting activity of purified IL-2, but not BSF-1. Finally, BSF-1 promoted only a very modest growth of Con A-induced T cell blasts, and failed to induce significant growth in seven other cytotoxic, alloreactive, and long-term T cell lines. Taken together, these results indicate that in addition to its known effects on resting and LPS-stimulated B cells, BSF-1 can promote growth of certain subsets of activated T cells, in particular, those that provide help to B cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1586-1586
Author(s):  
Zhi-Zhang Yang ◽  
Deanna Grote ◽  
Steven C. Ziesmer ◽  
Thomas E. Witzig ◽  
Anne J. Novak ◽  
...  

Abstract Abstract 1586 Transformation growth factor (TGF-β) is a highly pleiotropic cytokine critical to a variety of cellular events such as cell differentiation and apoptosis. TGF-β is synthesized as a prepro-TGF-β precursor and secreted after being processed in Golgi apparatus as a latent form that non-covalently combines both TGF-β and latency-associated protein (LAP). Our previous work in B-cell NHL has shown that the intratumoral T cell composition results in the establishment of a profoundly inhibitory tumor microenvironment. However, the underlying mechanism is only partially understood. In this study, using patient specimens and lymphoma cell lines, we evaluated the role of TGF-β in the tumor microenvironment and determined the effect of TGF-β on the generation of intratumoral TH1, TH17 and Treg cells in B-cell NHL. First, we determined expression of TGF-β and found that a latent form of TGF-β was specifically expressed on the surface of CD19+ B cells, but not on other types of cells from B-cell lymphoma biopsy specimens. By screening cell lines, we found that latent TGF-β was also expressed on the surface of lymphoma cell lines, confirming the finding. Second, we tested whether surface expression by lymphoma cells led to the secretion of TGF-β in culture medium. Using an ELISA assay, we detected variable levels of latent TGF-β in the culture medium of primary malignant B cells (median 100 pg/ml per million cells, range: undetectable −229 pg/ml, n=7). Similarly, lymphoma cell lines secreted variable amounts of TGF-β from undetectable to 200 pg/ml per million cells. Next, we determined the effect of TGF-b on intratumoral T cell proliferation and differentiation. As expected, exogenous addition of TGF-β inhibited the proliferation of T cells. Notably, the proliferation of intratumoral T cells was significantly reduced when co-cultured with lymphoma cells bearing an active form of TGF-β compared to that with lymphoma cells without TGF-β. Using flow cytometry, we showed that the addition of exogenous TGF-β enhanced Foxp3 expression in activated CD4+, CD4+CD45RA+ or CD4+CD45RO+ intratumoral T cells, suggesting that TGF-β promotes the generation of Treg cells in tumor microenvironment. In contrast, TGF-β suppressed the expression of IFN-γ in activated CD4+ T cells and inhibited the up-regulation of IL-12 and IL-23-induced IFN-γ expression in CD4+ cells, indicating that TGF-β suppresses the generation of TH1 cells. TGF-β alone slightly inhibited IL-17 expression in CD4+ T cells; however, TGF-β, in the presence of IL-6 and IL-23, up-regulated IL-17 expression in CD4+ T cells, suggesting proinflammatory cytokines are able to reverse the suppression induced by TGF-β. These results suggest that TGF-β controls the generation of TH1, TH17 and Treg cells contributing to the imbalance of effector TH cells and inhibitory Treg cells in the tumor microenvironment of B-cell NHL. Since malignant B-cells produce TGF-β, these results further support the important role of malignant B cells in the regulation of intratumoral T cell differentiation and the host immune response. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
pp. annrheumdis-2021-220435
Author(s):  
Theresa Graalmann ◽  
Katharina Borst ◽  
Himanshu Manchanda ◽  
Lea Vaas ◽  
Matthias Bruhn ◽  
...  

ObjectivesThe monoclonal anti-CD20 antibody rituximab is frequently applied in the treatment of lymphoma as well as autoimmune diseases and confers efficient depletion of recirculating B cells. Correspondingly, B cell-depleted patients barely mount de novo antibody responses during infections or vaccinations. Therefore, efficient immune responses of B cell-depleted patients largely depend on protective T cell responses.MethodsCD8+ T cell expansion was studied in rituximab-treated rheumatoid arthritis (RA) patients and B cell-deficient mice on vaccination/infection with different vaccines/pathogens.ResultsRituximab-treated RA patients vaccinated with Influvac showed reduced expansion of influenza-specific CD8+ T cells when compared with healthy controls. Moreover, B cell-deficient JHT mice infected with mouse-adapted Influenza or modified vaccinia virus Ankara showed less vigorous expansion of virus-specific CD8+ T cells than wild type mice. Of note, JHT mice do not have an intrinsic impairment of CD8+ T cell expansion, since infection with vaccinia virus induced similar T cell expansion in JHT and wild type mice. Direct type I interferon receptor signalling of B cells was necessary to induce several chemokines in B cells and to support T cell help by enhancing the expression of MHC-I.ConclusionsDepending on the stimulus, B cells can modulate CD8+ T cell responses. Thus, B cell depletion causes a deficiency of de novo antibody responses and affects the efficacy of cellular response including cytotoxic T cells. The choice of the appropriate vaccine to vaccinate B cell-depleted patients has to be re-evaluated in order to efficiently induce protective CD8+ T cell responses.


1993 ◽  
Vol 121 (5) ◽  
pp. 1141-1152 ◽  
Author(s):  
E A Wayner ◽  
S G Gil ◽  
G F Murphy ◽  
M S Wilke ◽  
W G Carter

The cutaneous T cell lymphomas (CTCL), typified by mycosis fungoides, and several chronic T cell mediated dermatoses are characterized by the migration of T lymphocytes into the epidermis (epidermotropism). Alternatively, other types of cutaneous inflammation (malignant cutaneous B cell lymphoma, CBCL, or lymphocytoma cutis, non-malignant T or B cell type) do not show evidence of epidermotropism. This suggests that certain T lymphocyte subpopulations are able to interact with and penetrate the epidermal basement membrane. We show here that T lymphocytes derived from patients with CTCL (HUT 78 or HUT 102 cells), adhere to the detergent-insoluble extracellular matrix prepared from cultured basal keratinocytes (HFK ECM). HUT cell adhesion to HFK ECM was inhibitable with monoclonal antibodies (mAbs) directed to the alpha 3 (P1B5) or beta 1 (P4C10) integrin receptors, and could be up-regulated by an activating anti-beta 1 mAb (P4G11). An inhibitory mAb, P3H9-2, raised against keratinocytes identified epiligrin as the ligand for alpha 3 beta 1 positive T cells in HFK ECM. Interestingly, two lymphocyte populations could be clearly distinguished relative to expression of alpha 3 beta 1 by flow cytometry analysis. Lymphokine activated killer cells, alloreactive cytotoxic T cells and T cells derived from patients with CTCL expressed high levels of alpha 3 beta 1 (alpha 3 beta 1high). Non-adherent peripheral blood mononuclear cells, acute T or B lymphocytic leukemias, or non-cutaneous T or B lymphocyte cell lines expressed low levels of alpha 3 beta 1 (alpha 3 beta 1low). Resting PBL or alpha 3 beta 1low T or B cell lines did not adhere to HFK ECM or purified epiligrin. However, adhesion to epiligrin could be up-regulated by mAbs which activate the beta 1 subunit indicating that alpha 3 beta 1 activity is a function of expression and affinity. In skin derived from patients with graft-vs.-host (GVH) disease, experimentally induced delayed hypersensitivity reactions, and CTCL, the infiltrating T cells could be stained with mAbs to alpha 3 or beta 1 and were localized in close proximity to the epiligrin-containing basement membrane. Infiltrating lymphocytes in malignant cutaneous B disease (CBCL) did not express alpha 3 beta 1 by immunohistochemical techniques and did not associate with the epidermal basement membrane. The present findings clearly define a function for alpha 3 beta 1 in T cells and strongly suggest that alpha 3 beta 1 interaction with epiligrin may be involved in the pathogenesis of cutaneous inflammation.


Sign in / Sign up

Export Citation Format

Share Document