scholarly journals Mechanisms regulating IgA class-specific immunoglobulin production in murine gut-associated lymphoid tissues. I. T cells derived from Peyer's patches that switch sIgM B Cells to sIgA B cells in vitro

1983 ◽  
Vol 157 (2) ◽  
pp. 433-450 ◽  
Author(s):  
H Kawanishi ◽  
LE Saltzman ◽  
W Strober

To explore mechanisms of T cell regulation governing mucosal IgA immune response, concanavalin A-induced cloned T cell lines from Peyer's patches (PP) as well as spleen were established. The cloned cell lines expressed Thy- 1.2(+), Lyt-l(+)2(-) and were radioresistant (1,500 rad). The capacity of the cloned T cells to regulate Ig synthesis was determined by measuring their effect on lipopolysaccharide (LPS)-induced polyclonal Ig synthesis by PP B cells. In initial studies Ig secreted by B cells was determined by double antibody radioimmunoassay. LPS in the absence of cloned T cells induced abundant amounts of IgM (average 8,860 ng/2 × 10(5) B cells) and IgG (average 1,190 ng/2 × 10(5) B cells), but little or no IgA. The addition of PP cloned T cells markedly suppressed production of IgM (88 percent at the highest T/B cell ratio, 4:1), but the addition of spleen cloned T cells suppressed only a little or not at all. IgG production was inhibited by both PP and spleen T clone cells (70 percent at the 4:1 T/B ratio), wheras IgA synthesis was enhanced by both clones, but only to a limited degree. In subsequent studies the expression of class-specific surface Ig (sIg) and cytoplasmic Ig (cIg) on/in unseparated PP B cells as well as Ig class- specific PP B cells and spleen B cells during culture with or without the cloned T cells was determined by immunofluorescence. The major findings were as follows: (a) Compared with unseparated B cell cultures and cultures of purified sIgM B cells derived from PP containing LPS alone, cultures containing LPS and PP cloned T cells showed a marked decrease in cIgM-, sIgG-, and cIgG-expressing cells that was accompanied by a striking increase in sIgA-bearing, but not cIgA-containing, cells. In contrast, unseparated B cell cultures and cultures of purified sIgM B cells derived from PP containing LPS and spleen cloned T cells did not show any increase in sIgA- bearing cells. (b) Compared with purified sIgG-bearing PP B cell cultures containing LPS alone, purified sIgG-bearing PP B cell cultures containing both LPS and PP cloned T cells showed no substantial change in sIgG- or cIgG- expressing cells, and no sIgA- or cIgA- expressing cells appeared. (c) Compared with sIgA-bearing PP B cell cultures containing LPS alone, purified sIgA-bearing PP B cell cultures containing both LPS and PP cloned T cells showed no increased proliferation, and cIgA cells did not occur. Cultures of purified sIgM B cells derived from spleen containing LPS and PP cloned T cells showed qualitatively similar changes. From these results we conclude that PP cloned T cells induced class-specific switching from sIgM- to sIgA- bearing B cells, whereas spleen cloned T cells lacked this property, although they may have induced an IgM {arrow} IgG or intersubclass IgG switch. These processes seem to be in part tissue dependent. Furthermore, the PP switch T cells appear to operate as true switch cells, which govern the pathway of DNA recombination events, rather than as classical helper cells, which act to expand already differentiated cells. Finally, these switch T cells probably account for the fact that PP are an important source of IgA B cells and also a major site of IgA heavy chain class switching during gut-associated mucosal B cell proliferation and differentation.

1983 ◽  
Vol 158 (6) ◽  
pp. 2024-2039 ◽  
Author(s):  
M Howard ◽  
L Matis ◽  
T R Malek ◽  
E Shevach ◽  
W Kell ◽  
...  

Antigen-activated T lymphocytes produce within 24 h of stimulation a factor that is indistinguishable biochemically and functionally from the B cell co-stimulating growth factor, BCGF-I, originally identified in induced EL4 supernatants: Supernatants from antigen-stimulated T cell lines are not directly mitogenic for resting B cells, but synergize in an H-2-unrestricted manner with anti-Ig activated B cells to produce polyclonal proliferation but not antibody-forming-cell development; biochemical studies reveal the B cell co-stimulating factor present in antigen-stimulated T cell line supernatants is identical by phenyl Sepharose chromatography and isoelectric focusing (IEF) to EL4 supernatant BCGF-I. We thus conclude that normal T cells produce BCGF-I in response to antigenic stimulation. Analysis of the mechanism of BCGF-I production by antigen-stimulated T cells showed that optimum amounts of BCGF-I were obtained as quickly as 24 h post-stimulation, and that the factor producing cells in the T cell line investigated bore the Lyt-1+2- phenotype. As few as 10(4) T cells produced sufficient BCGF-I to support the proliferation of 5 X 10(4) purified anti-Ig activated B cells. Finally, the activation of normal T cell lines to produce BCGF-I required either antigen presented in the context of syngeneic antigen-presenting cells (APC) or interleukin 2 (IL-2).


1995 ◽  
Vol 4 (3) ◽  
pp. 189-197 ◽  
Author(s):  
Farida Bouzahzah ◽  
Alain Bosseloir ◽  
Ernst Heinen ◽  
Léon J. Simar

We have isolated two subtypes of helper T cells from human tonsils: CD4+CD57+cells, mostly located in the germinal center (GC), and CD4+CD57-cells, distributed through the interfollicular areas but also present in the GC. In a functional study, we have compared the capacities of these T-cell subtypes to stimulate B cells in cocultures. In order to block T-cell proliferation while maintaining their activation level, we pretreated isolated T cells with mitomycin C prior to culture in the presence of B cells and added polyclonal activators such as PHA and Con A, combined or not with IL-2. Contrary to CD4+CD57-cells, CD4+CD57+cells did not markedly enhance B-cell proliferation. Even when sIgD-B cells typical of germinal center cells were tested, the CD4 CD57 cells had no significant effect. This is in accordance with the location of these cells: They mainly occupy the light zones of the GC where few B cells divide. Even when added to preactivated, actively proliferating cells, CD4+CD57+cells failed to modulate B-cell multiplication. On the supernatants of B-cell-T-cell cocultures, we examined by the ELISA technique the effect of T cells on Ig synthesis. Contrary to CD57-T cells, whose effect was strong, CD57+T cells weakly stimulated Ig synthesis. More IgM than IgG was generally found. Because CD57 antigen is a typical marker of natural killer cells, we tested the cytolytic activity of tonsillar CD4+CD57+cells on K562 target cells. Unlike NK cells, neither CD4+CD57+nor CD4+CD57-cells exhibit any cytotoxicity. Thus, germinal center CD4+CD57+cells are not cytolytic and do not strongly stimulate either B-cell proliferation or Ig secretion. CD4+CD57-cells, however, enhance B-cell proliferation and differentiation, thus acting like the classical helper cells of the T-dependent areas.


1986 ◽  
Vol 164 (6) ◽  
pp. 1940-1957 ◽  
Author(s):  
A F Calman ◽  
B M Peterlin

We analyzed the transcription and rearrangement of the T cell antigen receptor (Ti) genes Ti alpha and Ti beta in human B cell, T cell, and myeloid cell lines, as well as in purified tonsillar B and T cells. All four B cell lines examined, as well as one of two myeloid cell lines, expressed low levels of truncated Ti beta transcripts, as did freshly purified tonsillar B cells. Two of the B cell lines and one of the myeloid lines also expressed truncated Ti alpha transcripts, while tonsillar B cells did not. Sequence analysis of cDNA clones from a B cell line demonstrated that these truncated Ti alpha and Ti beta transcripts were composed of unrearranged J and C gene segments. Comparison of cDNA clones from T and B cells suggests that D alpha genes or N regions contribute to the formation of Ti alpha transcripts in T cells but not in B cells. None of the B cell or myeloid cell lines in this study showed evidence of Ti beta gene rearrangements by Southern blotting. Our data, and other studies of gene rearrangements in human tumors, demonstrate that the level of Ti beta transcriptional activity and the frequency of Ti beta gene rearrangements are correlated in all cell types examined. Thus, our data support the accessibility model of antigen receptor gene rearrangement, whereby the susceptibility of gene segments to recombination enzymes is correlated with their transcriptional activity.


1979 ◽  
Vol 149 (6) ◽  
pp. 1424-1437 ◽  
Author(s):  
C Y Wang ◽  
S M Fu ◽  
H G Kunkel

A major membrane glycoprotein with mol wt of approximately 54,000 has been isolated from membrane preparations of B-type lymphoid cell lines. Antiserum prepared against the isolated material specifically precipitated this glycoprotein from membranes labeled by surface radioiodination or by metabolic labeling. This antiserum was shown by complement-mediated cytotoxicity assay, membrane immunofluorescent staining, and by quantitative absorption analysis to react preferentially with certain B-lymphoblastoid cell lines, with a minor population of peripheral blood B lymphocytes, and a major population of tonsillar B lymphocytes. Certain B-cell leukemias also expressed the antigen, whereas others did not. Considerable variability was observed among positive B cells in the intensity of fluorescent staining even among the leukemic cells from a single individual. Although T cells, including T cells, were negative by direct immunofluorescent and cytotoxicity assay, evidence for low levels of the antigen on the cells of T cell lines was obtained. The whole specific antiserum and its F(ab')2 fragments stimulated B lymphocytes to proliferate. This proliferation did not produce differentiation to plasma cells and was T-cell independent. The monovalent Fab fragments had no effect. None of these preparations timulated T cells. The possibility that this antigen, termed gp54, may play some role in B-cell activation is discussed.


Blood ◽  
1993 ◽  
Vol 82 (9) ◽  
pp. 2781-2789 ◽  
Author(s):  
J Punnonen ◽  
G Aversa ◽  
JE de Vries

Abstract Studies on human B-cell development have been hampered by the lack of reproducible culture techniques to induce pre-B cells to differentiate into Ig-secreting plasma cells. Here, we describe that highly purified surface (s) mu-, cytoplasmic (c) mu+, CD10+, CD19+ human pre-B cells derived from fetal bone marrow (BM) differentiate with high frequencies into Ig-secreting plasma cells, when cocultured with activated, cloned CD4+ T cells and with interleukin-4 (IL-4). Production of IgM, total IgG, IgG4, and IgE in pre-B-cell cultures was detected, indicating that the cells also underwent Ig isotype switching. Pre-B-cell differentiation occurred in the absence of BM stromal cells, IL-7, and stem cell factor (SCF). However, IL-7 significantly enhanced the levels of Ig produced, whereas SCF was ineffective. Neutralizing anti-IL-4 monoclonal antibodies (MoAbs) completely inhibited pre-B-cell differentiation showing the specificity of the reaction. Intact CD4+ T- cell clones could be replaced by membrane preparations of these cells, indicating that the costimulatory signals provided by the activated CD4+ T cells are contact-mediated. In contrast, anti-CD40 MoAbs failed to provide the costimulatory signal required for pre-B-cell differentiation, which may be related to the very low expression of CD40 on fetal BM B cells. Activated CD4+ T cells and IL-4 also induced s mu expression and Ig synthesis in cultures initiated with pre-B cells that had been preincubated in medium for 2 days, and from which spontaneously emerging s mu+ B cells were removed by using a fluorescence-activated cell sorter. These results support the notion that the Ig synthesis observed in pre-B-cell cultures was not caused by outgrowth and differentiation of cells that spontaneously matured into s mu+ B cells. In addition, IL-4 and CD4+ T cells strongly enhanced CD40 and HLA-DR expression on the majority of cultured pre-B cells, further indicating that CD4+ T cells and IL-4 activate bona fide pre-B cells. Taken together, these data indicate that activated CD4+ T cells and IL-4 can provide all the necessary signals required for human pre-B cells to differentiate into Ig-secreting plasma cells.


2001 ◽  
Vol 75 (8) ◽  
pp. 3740-3752 ◽  
Author(s):  
Sarah Nikiforow ◽  
Kim Bottomly ◽  
George Miller

ABSTRACT In immunodeficient hosts, Epstein-Barr virus (EBV) often induces extensive B-cell lymphoproliferative disease and lymphoma. Without effective in vitro immune surveillance, B cells infected by the virus readily form immortalized cell lines. In the regression assay, memory T cells inhibit the formation of foci of EBV-transformed B cells that follows recent in vitro infection by EBV. No one has yet addressed which T cell regulates the early proliferative phase of B cells newly infected by EBV. Using new quantitative methods, we analyzed T-cell surveillance of EBV-mediated B-cell proliferation. We found that CD4+ T cells play a significant role in limiting proliferation of newly infected, activated CD23+ B cells. In the absence of T cells, EBV-infected CD23+ B cells divided rapidly during the first 3 weeks after infection. Removal of CD4+ but not CD8+ T cells also abrogated immune control. Purified CD4+ T cells eliminated outgrowth when added to EBV-infected B cells. Thus, unlike the killing of EBV-infected lymphoblastoid cell lines, in which CD8+ cytolytic T cells play an essential role, prevention of early-phase EBV-induced B-cell proliferation requires CD4+ effector T cells.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 3600-3600
Author(s):  
J. P. Sharman ◽  
J. Irish ◽  
G. Coffey ◽  
D. Czerwinski ◽  
Y. Hitoshi ◽  
...  

3600 Background: B-Cells require constitutive signaling from the B-Cell Receptor (BCR). Elimination of the BCR induces cell death. Since the BCR lacks enzymatic activity and relies upon the non-receptor tyrosine kinase Syk to initiate a signal transduction cascade, we hypothesized that R406; a small molecule Syk kinase inhibitor might eliminate the constitutive BCR signal and therefore have selective cytotoxicity for B-cells. Methods: Signal transduction changes were evaluated in cell lines and primary normal B-Cells via western blotting and phosphoflow cytometry. Effects on B-Cell, T-Cell, and Myeloid lineage cell lines were evaluated by 3H-thymidine proliferation assays, BRDU cell cycle analysis, and Annexin-V staining. Primary tumor samples were evaluated for B-Cell selective toxicity by evaluation of active caspase activity. Results: In cell culture R406 significantly alters the basal phosphorylation status of multiple proteins. Proliferation of B-Cell lines is reduced with an IC50 range of 625nM to 2.5uM without effect on T-Cell or Myeloid lineage cell lines. Cell cycle analysis reveals a reduction in B-Cell S-Phase with increase in G1/G0. Apoptosis is also increased in the B-cell lines without significant increase in the non-B cell lines. Primary normal B-Cells show reduced phosphorylation of BTK, Erk, and p38 in response to BCR cross linking. Primary tumor samples reveal activity against B-Cell neoplasms. In samples containing both malignant B-Cells and normal T-Cells, the induction of active caspase-3 is restricted to the malignant B-Cell population. Conclusions: 1) R406 alters signal transduction in B-Cells. 2) R406 demonstrates selective anti-B-Cell activity among cell lines. 3) Primary tumor samples reveal cytotoxic activity against malignant B-Cells without toxicity to T-Cells within the same specimen. 4) This compound has been safely tested in humans for non-malignant diseases with an appropriate pharmacokinetic profile; therefore these results support the initiation of an upcoming multicenter phase I/II clinical trial in patients with lymphoma. No significant financial relationships to disclose.


1984 ◽  
Vol 160 (3) ◽  
pp. 941-946 ◽  
Author(s):  
D M Spalding ◽  
S I Williamson ◽  
W J Koopman ◽  
J R McGhee

Polyclonal IgA secretion is inducible in murine B cells when DC-T from Peyer's patches (PP) provide the inducing stimulus. PP DC-T, which are composed predominantly of dendritic cells and Lyt-1+ T cells, are capable of dramatic augmentation of IgA secretion by PP or spleen B cells with minimal induction of IgM secretion. DC-T from spleen, however, are incapable of augmenting IgA secretion by either PP or spleen B cells. The level of IgA secretion is dependent upon the dose of DC-T providing the inducing stimulus and reaches a plateau with DC-T:B ratios of less than 1:1. This system for preferential induction of IgA responses should permit elucidation of cellular mechanisms involved in regulation of IgA secretion.


2001 ◽  
Vol 75 (3) ◽  
pp. 1095-1103 ◽  
Author(s):  
A. Van den Broeke ◽  
Y. Cleuter ◽  
T. Beskorwayne ◽  
P. Kerkhofs ◽  
M. Szynal ◽  
...  

ABSTRACT Bovine leukemia virus (BLV) is closely associated with the development of B-cell leukemia and lymphoma in cattle. BLV infection has also been studied extensively in an in vivo ovine model that provides a unique system for studying B-cell leukemogenesis. There is no evidence that BLV can directly infect ovine B cells in vitro, and there are no direct data regarding the oncogenic potential of the viral Tax transactivator in B cells. Therefore, we developed ovine B-cell culture systems to study the interaction between BLV and its natural target, the B cell. In this study, we used murine CD154 (CD40 ligand) and γ-chain-common cytokines to support the growth of B cells isolated from ovine lymphoid tissues. Integrated provirus, extrachromosomal forms, and viral transcripts were detected in BLV-exposed populations of immature, rapidly dividing surface immunoglobulin M-positive B cells from sheep ileal Peyer's patches and also in activated mature B cells isolated from blood. Conclusive evidence of direct B-cell infection by BLV was obtained through the use of cloned B cells derived from sheep jejunal Peyer's patches. Finally, inoculation of sheep with BLV-infected cultures proved that infectious virus was shed from in vitro-infected B cells. Collectively, these data confirm that a variety of ovine B-cell populations can support productive infection by BLV. The development of ovine B-cell cultures permissive for BLV infection provides a controlled system for investigating B-cell leukemogenic processes and the pathogenesis of BLV infection.


1997 ◽  
Vol 322 (3) ◽  
pp. 919-925 ◽  
Author(s):  
Vanessa C. TAYLOR ◽  
Martin SIMS ◽  
Sara BRETT ◽  
Mark C. FIELD

The CD52 antigen is a lymphocyte glycoprotein with an extremely short polypeptide backbone and a single N-linked glycan, and it is attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. Treatment of rheumatoid arthritis patients with CAMPATH-1H, a humanized monoclonal antibody against CD52, resulted, in a small number of cases, in the appearance and persistence of CD52-negative T cells. Similarly, CD52-negative B cells emerged following in vitro treatment of a CD52-positive human B cell line with CAMPATH-1H. Both the B and T CD52-negative cells were also found to be defective in surface expression of other GPI-anchored proteins. Biochemical analysis revealed a severe defect in the synthesis of a mature GPI precursor in both the B and T cell lines. Therefore the phenotype of these CD52-negative B and T cells closely resembles that of lymphocytes from patients with paroxysmal nocturnal haemoglobinuria (PNH), in which the first step of the GPI-biosynthetic pathway, i.e. synthesis of GlcNAc-phosphatidylinositol, is blocked. In all cases studied to date, this defect maps to a mutation of the phosphatidylinositolglycan class A (PIG-A) structural gene. We therefore amplified the PIG-A gene from both the GPI-negative B and T cells by PCR and determined the nucleotide sequence. No differences from the wild-type sequence were detected; therefore a classical PNH mutation cannot be responsible for the GPI-biosynthesis defect in these cell lines. Significantly, the GPI-negative phenotype of the B cells was reversible upon separation of the positive and negative cells, resulting in a redistribution to a mixed population with either CD52-positive or -negative cells, whereas populations of 100% CD52-negative T cells were stably maintained during culture. Therefore, whereas the GPI-biosynthesis deficiency in the T cell lines may be due to a mutation in another gene required by the GPI-biosynthetic pathway, the reversible nature of this block in the B cell lines suggests a less direct cause, possibly an alteration in a regulatory factor. Overall, these data demonstrate that the PNH phenotype can be generated without a mutation in the PIG-A structural gene, and thereby identify a novel mechanism for the development of GPI deficiency.


Sign in / Sign up

Export Citation Format

Share Document