scholarly journals Phenotype, specificity, and function of T cell subsets and T cell interactions involved in skin allograft rejection.

1987 ◽  
Vol 165 (5) ◽  
pp. 1296-1315 ◽  
Author(s):  
A S Rosenberg ◽  
T Mizuochi ◽  
S O Sharrow ◽  
A Singer

In the present study we used an adoptive transfer model with athymic nude mice to characterize the T cells involved in initiating and mediating skin allograft rejection. It was found that skin allograft rejection in nude mice required the transfer of immunocompetent T cells and that such reconstitution did not itself stimulate the appearance of T cells derived from the nude host. Reconstitution with isolated populations of Lyt-2+/L3T4- T cells resulted in the rapid rejection of MHC class I-disparate skin allografts, whereas reconstitution with isolated populations of L3T4+/Lyt-2- T cells resulted in the rapid rejection of MHC class II-disparate and minor H-disparate skin allografts. By correlating these rejection responses with the functional capabilities of antigen-specific T cells contained within the reconstituting Lyt-2+ and L3T4+ T cell populations, it was noted that skin allografts were only rejected by mice that, as shown by in vitro assessment, contained both lymphokine-secreting Th cells and lymphokine-responsive Tk cells specific for the alloantigens of the graft. The ability of two such functionally distinct T cell subsets to interact in vivo to reject skin allografts was directly demonstrated in H-Y-specific rejection responses by taking advantage of the fact that H-Y-specific Th cells are L3T4+ while H-Y specific Tk cells are Lyt-2+. Finally, the importance of in vivo interactions between functionally distinct Th/T-inducer cells and T killer (Tk)/T-effector cells in skin allograft rejection was demonstrated by the observation that normal B6 mice retain Qala and Kbm6 skin allografts because of a selective deficiency in antigen-specific Th cells, even though they contain T-effector cells that, when activated, are able to reject such allografts. Thus, the ability to reject skin allografts is neither unique to a specialized subset of T cells with a given Lyt phenotype, nor unique to a specialized subset of helper-independent effector T cells with so-called dual function capability. Rather, skin allograft rejection can be mediated by in vivo collaborations between T-inducer cells and T-effector cells, and the two interacting T cell subsets can express different Lyt phenotypes as well as different antigen specificities.

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 815-815
Author(s):  
Farhad Ravandi ◽  
Naval Daver ◽  
Guillermo Garcia-Manero ◽  
Christopher B Benton ◽  
Philip A Thompson ◽  
...  

Abstract Background: Blocking PD-1/PD-L1 pathways enhances anti-leukemia responses by enabling T-cells in murine models of AML (Zhang et al, Blood 2009). PD-1 positive CD8 T-cells are increased in bone marrow (BM) of pts with AML (Daver et al, AACR 2016). PD1 inhibition has shown activity in AML (Berger et al, Clin Cancer Res 2008). We hypothesized that addition of nivolumab to an induction regimen of ara-C and idarubicin may prolong relapse-free survival (RFS) and overall survival (OS); this study was designed to determine the feasibility of this combination. Methods: Pts with newly diagnosed acute myeloid leukemia (by WHO criteria; ≥20% blasts) and high risk MDS (≥10% blasts) were eligible to participate if they were 18-65 yrs of age and had adequate performance status (ECOG ≤3) and organ function (LVEF ≥ 50%; creatinine ≤ 1.5 g mg/dL, bilirubin ≤ 1.5 mg/dL and transaminases ≤ 2.5 times upper limit of normal). Treatment included 1 or 2 induction cycles of ara-C 1.5 g/m2 over 24 hours (days 1-4) and Idarubicin 12 mg/m2 (days 1-3). Nivolumab 3 mg/kg was started on day 24 ± 2 days and was continued every 2 weeks for up to a year. For pts achieving complete response (CR) or CR with incomplete count recovery (CRi) up to 5 consolidation cycles of attenuated dose ara-C and idarubicin was administered at approximately monthly intervals. Eligible pts received an allogeneic stem cell transplant (alloSCT) at any time during the consolidation or thereafter. Results: 3 pts with relapsed AML were treated at a run-in phase with a dose of nivolumab 1 mg/kg without specific drug-related toxicity. Subsequently, 32 pts (median age 53 yrs; range, 26-65) were treated as above including 30 with AML (24 de novo AML, 2 therapy-related AML, 3 secondary AML and 1 therapy-related secondary AML) and 2 high risk MDS. Pre-treatment genetic risk by ELN criteria was 11 adverse, 16 intermediate, and 5 favorable, including 2 FLT3 -ITD mutated, 5 NPM1 mutated, and 7 TP53 mutated. All 32 pts were evaluable for response and 23 (72%) achieved CR/CRi (19 CR, 4 CRi). The 4-week and 8 week mortality was 6% and 6%. The median number of doses of nivolumab received was 6 (range, 0-13); one pt did not receive nivolumab due to insurance issues. 9 pts underwent an alloSCT. After a median follow-up of 8.3 mths (range, 1.5-17.0) the median RFS among the responding pts has not been reached (range, 0.1 - 15.8 mths) and the median OS has not been reached (range 0.5-17.0 mths). Grade 3/4 immune mediated toxicities have been observed in 5 pts and include rash, pancreatitis, and colitis. Other grade 3/4 toxicities thought to be potentially related to nivolumab include cholecystitis in one pt. 9 pts proceeded to an alloSCT. Donor source was matched related in 2, matched unrelated in 6 and haplo-identical in 1 pt. Conditioning regimen was Fludarabine plus busulfan-based in 8, and fludarabine plus melphalan in 1 pt. 4 pts developed graft versus host disease (GVHD)(grade I/II in 3, grade III/IV in 1), which responded to treatment in 3. Multicolor flow-cytometry studies are conducted by the Immunotherapy Platform on baseline (prior to first dose of nivolumab) and on-treatment BM aspirate and peripheral blood to assess the T-cell repertoire and expression of co-stimulatory receptors and ligands on T-cell subsets and leukemic blasts, respectively. The baseline BM was evaluated on 23 of the 32 evaluable pts, including 18 responders and 5 non-responders. Pts who achieved a CR/CRi had a trend of higher frequency of live CD3+ total T cell infiltrate as compared to non-responders in the baseline BM aspirates (Fig 1A). We evaluated expression of immune markers on T cell subsets: CD4 T effector cells [Teff]: CD3+CD4+CD127lo/+Foxp3-, CD4 T regulatory cells [Treg]: CD3+CD4+CD127-Foxp3+, and CD8 T cells. At baseline, BM of non-responders had significantly higher percentage of CD4 T effector cells co-expressing the inhibitory markers PD1 and TIM3 (p<0.05) and a trend towards higher percentage of CD4 T effector cells co-expressing PD1 and LAG3 compared to responders (Fig 1B). Co-expression of TIM3 or LAG3 on PD1+ T cells have been shown to be associated with an exhausted immune phenotype in AML (Zhou et al., Blood 2011). Conclusion: Addition of nivolumab to ara-C and anthracycline induction chemotherapy is feasible and safe in younger pts with AML. Among the pts proceeding to alloSCT the risk of GVHD is not significantly increased. Figure 1 Figure 1. Disclosures Daver: Pfizer Inc.: Consultancy, Research Funding; Otsuka America Pharmaceutical, Inc.: Consultancy; Sunesis Pharmaceuticals, Inc.: Consultancy, Research Funding; Novartis Pharmaceuticals Corporation: Consultancy; Bristol-Myers Squibb Company: Consultancy, Research Funding; Kiromic: Research Funding; Karyopharm: Consultancy, Research Funding; Jazz: Consultancy; Immunogen: Research Funding; Daiichi-Sankyo: Research Funding; Incyte Corporation: Honoraria, Research Funding. Thompson: Pharmacyclics: Honoraria, Membership on an entity's Board of Directors or advisory committees. Jabbour: Bristol-Myers Squibb: Consultancy. Takahashi: Symbio Pharmaceuticals: Consultancy. DiNardo: Novartis: Honoraria, Research Funding; Daiichi-Sankyo: Honoraria, Research Funding; AbbVie: Honoraria, Research Funding; Agios: Honoraria, Research Funding; Celgene: Honoraria, Research Funding. Sharma: Jounce: Consultancy, Other: stock, Patents & Royalties: Patent licensed to Jounce; Astellas: Consultancy; EMD Serono: Consultancy; Amgen: Consultancy; Astra Zeneca: Consultancy; GSK: Consultancy; Consetellation: Other: stock; Evelo: Consultancy, Other: stock; Neon: Consultancy, Other: stock; Kite Pharma: Consultancy, Other: stock; BMS: Consultancy. Cortes: BMS: Consultancy, Research Funding; Sun Pharma: Research Funding; Novartis Pharmaceuticals Corporation: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Teva: Research Funding; ImmunoGen: Consultancy, Research Funding; ARIAD: Consultancy, Research Funding. Kantarjian: Delta-Fly Pharma: Research Funding; Amgen: Research Funding; ARIAD: Research Funding; Novartis: Research Funding; Bristol-Meyers Squibb: Research Funding; Pfizer: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1898-1898
Author(s):  
Kelley M.K. Haarberg ◽  
Crystina Bronk ◽  
Dapeng Wang ◽  
Amer Beg ◽  
Xue-Zhong Yu

Abstract Abstract 1898 Protein kinase C theta (PKCθ), a T cell signaling molecule, has been implicated as a therapeutic target for several autoimmune diseases as well as graft-versus-host disease (GVHD). PKCθ plays a vital role in stabilization of the immunologic synapse between T effector cells and antigen presenting cells (APC), but has been shown to be excluded from the immunologic synapse in T regulatory cells (T reg). PKCθ inhibition reduces the alloreactivity of donor T cells responsible for induction of GVHD while preserving graft-versus-leukemia (GVL) responses. The roles of PKCθ and the potential compensatory alpha isoform (PKCα) are not clearly defined with regard to alloresponses or T cell mediated responses in GVHD. In this context, we measured PKCθ and PKCα/θ gene deficient T cell activation upon TCR-ligation in vitro using [3H]-TdR incorporation and CSFE labeling assays. T cells from PKCθ and PKCα/θ gene deficient donor mice were utilized in vivo in a pre-clinical allogenic murine model of myeloablative bone marrow transplantation (BMT). The development of GVHD was monitored in recipient mice with or without injection of A20-luciferase cells to observe the progression of GVL in vivo. Combined blockade of PKCα and PKCθ causes a significant decrease in T cell proliferation compared to blocking PKCθ alone in vitro. Deficiency in PKCα and PKCθ had no effect on immune reconstitution following irradiation and BMT in vivo. Even with a high transplant load of 5×106 CD4+ and CD8+ T cells, PKCα/θ deficient (PKCα/θ−/−) T cells failed to induce acute GVHD. Our data suggest that the ability of double deficient T cells to induce GVHD was further reduced than PKCθ-deficient T cells. Additionally, a greater number and percentage of B220+ B cells and FoxP3+ T regs were isolated from the spleens of PKCα/θ−/− T cell recipient mice 120 after BMT than were isolated from wild type (WT) or PKCθ−/− T cell recipients. Fewer CD4+ or CD8+ T effector cells were isolated from the spleens of PKCα/θ−/− T cell recipient mice 120 after BMT than were isolated from wild type or PKCθ−/− T cell recipients. Importantly, the activity of B cells isolated from PKCα/θ−/− T cell recipient mice 120 after BMT was greater on a per cell basis, while the activity of T effector cells isolated from these mice was greatly reduced compared to WT or PKCθ−/− T cell recipients. While not absent, GVL was reduced in PKCα/θ−/− T cell recipient mice when compared to WT or PKCθ−/− T cell recipients. This work demonstrates the requirement of PKCα and θ for optimal activation and function of T cells in vitro. These experiments highlight a potential compensatory role for PKCα in the absence of PKCθ in T cell signaling and activation. Combined deficiency of PKCα and θ prevents induction of acute GVHD while improving the maintenance of splenic cellularity in PKCα/θ T cell recipient mice. Additionally, PKCα/θ dual deficient T cell transplant shifts the splenic balance toward a greater number and percentage of T reg and B cells and away from T effector cells following BMT. The reduced and sub-optimally active T effector cells isolated from PKCα/θ−/− T cell recipient mice in combination with reduced GVL stresses the importance of PKCα and θ molecules and their roles in T cell activity in the context of both GVHD and GVL. Dual deficiency of PKCα/θ is associated with a decline of T effector function that is optimal for the amelioration of GVHD, but is perhaps too reduced to substantially maintain effective GVL. Modulation of PKCα and θ signaling presents a valid avenue of investigation as a therapeutic option for GVHD. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Jared Liu ◽  
Hsin-Wen Chang ◽  
Kristen M. Beck ◽  
Sahil Sekhon ◽  
Timothy H. Schmidt ◽  
...  

AbstractThe IL17A inhibitor secukinumab is efficacious for the treatment of psoriasis. In order to define its mechanism of action, it is important to understand its impact on psoriatic whole skin tissue as well as specific skin-resident immune cell populations such as T lymphocytes. In this study, we treated 15 moderate-to-severe plaque psoriasis patients with secukinumab and characterized the longitudinal transcriptomic changes of whole lesional skin tissue and cutaneous CD4+ T effector cells (Teffs), CD4+ T regulatory cells (Tregs), and CD8+ T effector cells during 12 weeks of treatment. Secukinumab was clinically effective, with 100%, 47%, and 27% of patients in the study achieving PASI75, PASI90, and PASI100 by week 12, respectively. At baseline prior to treatment, we observed that IL17A overexpression predominates in psoriatic CD8+ T cells rather than Teffs, supporting the importance of IL-17-secreting CD8+ T cells (Tc17) compared to IL-17-secreting CD4+ T cells (Th17) cells in the pathogenesis of psoriasis. Although secukinumab targets only IL17A, we observed rapid reduction of IL17A, IL17F, IL23A, IL23R, and IFNG expression in lesional skin as soon as 2 weeks after initiation of treatment and normalization of expression by week 12. Secukinumab treatment resulted in resolution of 89-97% of psoriasis-associated expression differences in both bulk tissue and T cell subsets by week 12 of treatment. Overall, secukinumab appears to rapidly reverse many of the molecular hallmarks of psoriasis.


2001 ◽  
Vol 69 (9) ◽  
pp. 5726-5735 ◽  
Author(s):  
Ulf Yrlid ◽  
Mattias Svensson ◽  
Anders Håkansson ◽  
Benedict J. Chambers ◽  
Hans-Gustaf Ljunggren ◽  
...  

ABSTRACT The present study was initiated to gain insight into the interaction between splenic dendritic cells (DC) and Salmonella enterica serovar Typhimurium in vivo. Splenic phagocytic cell populations associated with green fluorescent protein (GFP)-expressing bacteria and the bacterium-specific T-cell response were evaluated in mice given S. enterica serovar Typhimurium expressing GFP and ovalbumin. Flow cytometry analysis revealed that GFP-positive splenic DC (CD11c+ major histocompatibility complex class II-positive [MHC-II+] cells) were present following bacterial administration, and confocal microscopy showed that GFP-expressing bacteria were contained within CD11c+MHC-II+ splenocytes. Furthermore, splenic DC and T cells were activated following Salmonella infection. This was shown by increased surface expression of CD86 and CD40 on CD11c+ MHC-II+ cells and increased CD44 and CD69 expression on CD4+ and CD8+ T cells.Salmonella-specific gamma interferon (IFN-γ)-producing cells in both of these T-cell subsets, as well as cytolytic effector cells, were also generated in mice given live bacteria. The frequency of Salmonella-specific CD4+ T cells producing IFN-γ was greater than that of specific CD8+ T cells producing IFN-γ in the same infected animal. This supports the argument that the predominant source of IFN-γ production by cells of the specific immune response is CD4+ T cells. Finally, DC that phagocytosed live or heat-killed Salmonella in vitro primed bacterium-specific IFN-γ-producing CD4+ and CD8+ T cells as well as cytolytic effector cells following administration into naı̈ve mice. Together these data suggest that DC are involved in priming naı̈ve T cells toSalmonella in vivo.


2020 ◽  
Author(s):  
Jens Eberlein ◽  
Bennett Davenport ◽  
Tom T. Nguyen ◽  
Francisco Victorino ◽  
Kevin Jhun ◽  
...  

ABSTRACTThe choreography of complex immune responses, including the priming, differentiation, and modulation of specific effector T cell populations generated in the immediate wake of an acute pathogen challenge, is in part controlled by chemokines, a large family of mostly secreted molecules involved in chemotaxis and other patho/physiological processes. T cells are both responsive to varied chemokine cues and a relevant source for certain chemokines themselves. Yet the actual range, regulation, and role of effector T cell-derived chemokines remains incompletely understood. Here, using different in vivo models of viral and bacterial infection as well as protective vaccination, we have defined the entire spectrum of chemokines produced by pathogen-specific CD8+ and CD4+T effector cells, and delineated several unique properties pertaining to the temporospatial organization of chemokine expression patterns, synthesis and secretion kinetics, and cooperative regulation. Collectively, our results position the “T cell chemokine response” as a notably prominent, largely invariant yet distinctive force at the forefront of pathogen-specific effector T cell activities, and establish novel practical and conceptual approaches that may serve as a foundation for future investigations into role of T cell-produced chemokines in infectious and other diseases.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A738-A738
Author(s):  
Bryan Grogan ◽  
Reice James ◽  
Michelle Ulrich ◽  
Shyra Gardai ◽  
Ryan Heiser ◽  
...  

BackgroundRegulatory T cells (Tregs) play an important role in maintaining immune homeostasis, preventing excessive inflammation in normal tissues. In cancer, Tregs hamper anti-tumor immunosurveillance and facilitate immune evasion. Selective targeting of intratumoral Tregs is a potentially promising treatment approach. Orthogonal evaluation of tumor-infiltrating lymphocytes (TILs) in solid tumors in mice and humans have identified CCR8, and several tumor necrosis family receptors (TNFRs), including TNFSFR8 (CD30), as receptors differentially upregulated on intratumoral Tregs compared to normal tissue Tregs and other intratumoral T cells, making these intriguing therapeutic targets.Brentuximab vedotin (BV) is approved for classical Hodgkin lymphoma (cHL) across multiple lines of therapy including frontline use in stage III/IV cHL in combination with doxorubicin, vinblastine, and dacarbazine. BV is also approved for certain CD30-expressing T-cell lymphomas. BV is comprised of a CD30-directed monoclonal antibody conjugated to the highly potent microtubule-disrupting agent monomethyl auristatin E (MMAE).The activity of BV in lymphomas is thought to primarily result from tumor directed intracellular MMAE release, leading to mitotic arrest and apoptotic cell death.The role CD30 plays in normal immune function is unclear, with both costimulatory and proapoptotic roles described. CD30 is transiently upregulated following activation of memory T cells and expression has been linked to highly activated/suppressive IRF4+ effector Tregs.MethodsHere we evaluated the activity of BV on CD30-expressing T cell subsets in vitro and in vivo.ResultsTreatment of enriched T cell subsets with clinically relevant concentrations of BV drove selective depletion of CD30-expressing Tregs > CD30-expressingCD4+ T memory cells, with minimal effects on CD30-expressing CD8+ T memory cells. In a humanized xeno-GVHD model, treatment with BV selectively depleted Tregs resulting in accelerated wasting and robust T cell expansion. The observed differential activity on Tregs is likely attributable to significant increases in CD30 expression and reduced efflux pump activity relative to other T cell subsets. Interestingly, blockade of CD25 signaling prevents CD30 expression on T cell subsets without impacting proliferation, suggesting a link between CD25, the high affinity IL-2 receptor, and CD30 expression.ConclusionsTogether, these data suggest that BV may have an immunomodulatory effect through selective depletion of highly suppressive CD30-expressing Tregs.AcknowledgementsThe authors would like to thank Michael Harrison, PharmD for their assistance in abstract preparation.Ethics ApprovalAnimals studies were approved by and conducted in accordance with Seattle Genetics Institutional Care and Use Committee protocol #SGE-024.


1976 ◽  
Vol 144 (3) ◽  
pp. 776-787 ◽  
Author(s):  
R M Zinkernagel

In mice, primary footpad swelling after local infection with lymphocytic choriomeningitis virus (LCMV) and delayed-type hypersensitivity (DTH) adoptively transferred by LCMV immune lymphocytes are T-cell dependent. Nude mice do not develop primary footpad swelling, and T-cell depletion abrogates the capacity to transfer LCMV-specific DTH. Effector T cells involved in eliciting dose-dependent DTH are virus specific in that vaccinia virus-immune lymphocytes could not elicit DTH in LCMV-infected mice. The adoptive transfer of DTH is restricted to H-2K or H-2D compatible donor-recipient combinations. Distinct from the fowl-gamma-globulin DTH model, I-region compatibility is neither necessary nor alone sufficient. Whatever the mechanisms involved in this K- or D-region associated restriction in vivo, it most likely operates at the level of T-cell recognition of "altered self" coded in K or D. T cells associated with the I region (helper T cells and DTH-T cells to fowl-gamma-globulin) are specific for soluble, defined, and inert antigens. T cells associated with the K and D region (T cells cytotoxic in vitro and in vivo for acute LCMV-infected cells, DTH effector T cells, and anti-viral T cells) are specific for infectious, multiplying virus. The fact that T-cell specificity is differentially linked with the I region or with the K and D regions of H-2 may reflect the fundamental biological differences of these antigens. Although it cannot be excluded that separate functional subclasses of T-effector cells could have self-recognizers for different cell surface structures coded in I or K and D, it is more likely that the antigen parameters determine whether T cells are specific for "altered" I or "altered" K- or D-coded structures.


1979 ◽  
Vol 150 (6) ◽  
pp. 1293-1309 ◽  
Author(s):  
J E Swierkosz ◽  
P Marrack ◽  
J W Kappler

We have examined the expression of I-region antigens on functional subpopulations of murine T cells. A.TH anti-A.TL (anti-Ik, Sk, Gk) alloantiserum was raised by immunization of recipients with concanavalin A (Con A) stimulated thymic and peripheral T-cell blasts. In contrast to similar antisera made by conventional methods, the anti-Ia blast serum was highly cytotoxic for purified T lymphocytes. Moreover, it reacted in a specific fashion with T cells having particular functions. Treatment of keyhole limpet hemocyanin (KLH)-primed B10.A (H-2 alpha) T cells with this antiserum plus complement resulted in the elimination of helper activity for B-cell responses to trinitrophenyl-KLH. Inhibition was shown to be a result of the selective killing of one type of helper T cell whose activity could be replaced by a factor(s) found in the supernate of Con A-activated spleen cells. A second type of helper cell required for responses to protein-bound antigens appeared to be Ia-. By absorption and analysis on H-2 recombinants, at least two specificities were detectable on helper T cells; one mapping in the I-A subregion and a second in a region(s) to the right of I-J. In addition, the helper T cell(s) involved in the generation of alloreactive cytotoxic lymphocytes was shown to be Ia+, whereas cytotoxic effector cells and their precursors were Ia- with this antiserum. These results provide strong evidence for the selective expression of I-region determinants on T-cell subsets and suggest that T-cell-associated Ia antigens may play an important role in T-lymphocyte function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ditte E. Jæhger ◽  
Mie L. Hübbe ◽  
Martin K. Kræmer ◽  
Gael Clergeaud ◽  
André V. Olsen ◽  
...  

AbstractAdoptive T-cell transfer (ACT) offers a curative therapeutic option for subsets of melanoma and hematological cancer patients. To increase response rates and broaden the applicability of ACT, it is necessary to improve the post-infusion performance of the transferred T cells. The design of improved treatment strategies includes transfer of cells with a less differentiated phenotype. Such T cell subsets have high proliferative potential but require stimulatory signals in vivo to differentiate into tumor-reactive effector T cells. Thus, combination strategies are needed to support the therapeutic implementation of less differentiated T cells. Here we show that systemic delivery of tumor-associated antigens (TAAs) facilitates in vivo priming and expansion of previously non-activated T cells and enhance the cytotoxicity of activated T cells. To achieve this in vivo priming, we use flexible delivery vehicles of TAAs and a TLR7/8 agonist. Contrasting subcutaneous delivery systems, these vehicles accumulate TAAs in the spleen, thereby achieving close proximity to both cross-presenting dendritic cells and transferred T cells, resulting in robust T-cell expansion and anti-tumor reactivity. This TAA delivery platform offers a strategy to safely potentiate the post-infusion performance of T cells using low doses of antigen and TLR7/8 agonist, and thereby enhance the effect of ACT.


2019 ◽  
Vol 30 (8) ◽  
pp. 1439-1453 ◽  
Author(s):  
Julia Hagenstein ◽  
Simon Melderis ◽  
Anna Nosko ◽  
Matthias T. Warkotsch ◽  
Johannes V. Richter ◽  
...  

BackgroundNew therapies blocking the IL-6 receptor (IL-6R) have recently become available and are successfully being used to treat inflammatory diseases like arthritis. Whether IL-6 blockers may help patients with kidney inflammation currently remains unknown.MethodsTo learn more about the complex role of CD4+ T cell-intrinsic IL-6R signaling, we induced nephrotoxic nephritis, a mouse model for crescentic GN, in mice lacking T cell–specific IL-6Ra. We used adoptive transfer experiments and studies in reporter mice to analyze immune responses and Treg subpopulations.ResultsLack of IL-6Ra signaling in mouse CD4+ T cells impaired the generation of proinflammatory Th17 cells, but surprisingly did not ameliorate the course of GN. In contrast, renal damage was significantly reduced by restricting IL-6Ra deficiency to T effector cells and excluding Tregs. Detailed studies of Tregs revealed unaltered IL-10 production despite IL-6Ra deficiency. However, in vivo and in vitro, IL-6Ra classic signaling induced RORγt+Foxp3+ double-positive Tregs (biTregs), which carry the trafficking receptor CCR6 and have potent immunoregulatory properties. Indeed, lack of IL-6Ra significantly reduced Treg in vitro suppressive capacity. Finally, adoptive transfer of T cells containing IL-6Ra−/− Tregs resulted in severe aggravation of GN in mice.ConclusionsOur data refine the old paradigm, that IL-6 enhances Th17 responses and suppresses Tregs. We here provide evidence that T cell–intrinsic IL-6Ra classic signaling indeed induces the generation of Th17 cells but at the same time highly immunosuppressive RORγt+ biTregs. These results advocate caution and indicate that IL-6–directed therapies for GN need to be cell-type specific.


Sign in / Sign up

Export Citation Format

Share Document