scholarly journals Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells.

1988 ◽  
Vol 167 (2) ◽  
pp. 452-472 ◽  
Author(s):  
I Anegón ◽  
M C Cuturi ◽  
G Trinchieri ◽  
B Perussia

We report evidence that FcR(CD16) on human NK cells are signal-transducing molecules that, upon ligand binding, induce transcription of genes encoding surface activation molecules [IL-2-R(CD25)] and cytokines (IFN-gamma and TNF) relevant to NK cell biology and functions. Homogeneous NK and T cell populations purified from short-term bulk cultures of PBMC with irradiated B lymphoblastoid cell lines were cultured in the presence of FcR ligands (particulate immune complexes or immobilized anti-CD16 antibodies) alone or with rIL-2. Upon 18 h of stimulation, NK cells express Tac, TfR, and 4F2 antigens and produce IFN-gamma and TNF; both effects are synergistically enhanced in the presence of rIL-2, which is itself ineffective. Treatment of NK cells with FcR(CD16) ligands induces accumulation of mRNA for IFN-gamma and TNF and, to a lesser extent, IL-2-R with fast kinetics also in the absence of de novo protein synthesis. rIL-2 and FcR(CD16) ligands synergize to induce mRNA accumulation. mRNA accumulation and transcription of TNF and IFN-gamma genes induced by FcR(CD16) ligands are greater than those induced by rIL-2, and the reverse is true for IL-2-R. The two stimuli do not synergize at the transcriptional level. These observations indicate that the mechanisms through which FcR(CD16) ligands and rIL-2 induce NK cell activation are, in part, distinct. Both operate at the transcriptional level, although other mechanisms are probably induced by the FcR ligand stimulus per se or in combination with other lymphokines and synergize at a post-transcriptional or translational level to enhance NK cell activation.

1989 ◽  
Vol 169 (2) ◽  
pp. 549-567 ◽  
Author(s):  
M A Cassatella ◽  
I Anegón ◽  
M C Cuturi ◽  
P Griskey ◽  
G Trinchieri ◽  
...  

In this study, we present evidence that interaction of Fc gamma R(CD16) with ligands (immune complexes or anti-CD16 antibodies) induces a rapid rise in [Ca2+]i and fast production of both inositol 1,4,5 triphosphate (IP3) and IP4 in homogeneous NK cell preparations. Part of the initial [Ca2+]i rise observed upon stimulation of NK cells with either anti-CD16 antibodies alone or after their crosslinking at the cell membrane depends on Ca2+ mobilization from intracellular stores, but sustained [Ca2+]i levels are maintained, after the initial spike, through influx of extracellular Ca2+. The [Ca2+]i rise is mediated, at least in part, by increases in IP3 after receptor-induced hydrolysis of membrane polyphosphoinositides (PPI). The role of extracellular Ca2+ in Fc gamma R(CD16)-dependent induction of lymphokine gene expression has been tested by evaluating production, mRNA accumulation and transcription of IFN-gamma and TNF in NK cells stimulated with Fc gamma R(CD16) ligands and/or rIL-2 in the presence of EGTA. Under these conditions, accumulation and transcription of both IFN-gamma and TNF mRNA induced by CD16 ligands, but not that induced by rIL-2, is completely abolished and neither cytokine can be detected at significant levels in the supernatant fluids of cells so treated. These data confirm that NK cell activation by specific ligands occurs through mechanisms distinct from those induced by IL-2, and indicate that extracellular Ca2+ represents a stringent requirement for cytokine production induced in NK cells through specific (Fc gamma R) stimulation. Our data also indicate that the [Ca2+]i rise induced upon Fc gamma R(CD16) crosslinking, though necessary, is not sufficient per se to induce activation of lymphokine genes, compatible with the hypothesis that Fc gamma R(CD16) crosslinking generates additional transducing signals that synergize with IL-2 to maximally activate NK cells.


Blood ◽  
1992 ◽  
Vol 80 (3) ◽  
pp. 670-677 ◽  
Author(s):  
WJ Murphy ◽  
JR Keller ◽  
CL Harrison ◽  
HA Young ◽  
DL Longo

Abstract Purified natural killer (NK) cells were obtained from mice with severe combined immune deficiency (SCID) to ascertain their effect on hematopoiesis. When activated and propagated with recombinant human interleukin-2 (rhIL-2) in vitro, SCID spleen cells maintained a phenotypic and lytic spectrum consistent with a pure population of activated NK cells. When added with syngeneic bone marrow cells (BMC) in soft agar, the activated NK cells could support hematopoietic growth in vitro without the addition of exogenous hematopoietic growth factors. However, when syngeneic BMC were added along with cytokines to produce optimal growth conditions, the addition of NK cells was then inhibitory for hematopoietic colony formation. Antibodies to interferon- gamma (IFN-gamma) partially reversed the inhibitory effects. Supernatants from the NK-cell cultures could also exert these effects on hematopoiesis, although to a lesser extent. Analysis of the NK cell RNA demonstrated that activated NK cells express genes for hematopoietic growth factors such as granulocyte-macrophage colony- stimulating factor (GM-CSF), granulocyte CSF (G-CSF), and IL-1 beta. The NK cells were also found to express IFN-gamma, transforming growth factor-beta 1 (TGF-beta 1), and tumor necrosis factor-alpha (TNF-alpha) mRNA. Analysis of the NK-cell supernatants using factor-dependent myeloid progenitor cell lines showed that the NK cells were producing G- CSF and growth-promoting activity that could not be attributed to IL-1, IL-3, IL-4, IL-5, IL-6, GM-CSF, G-CSF, macrophage CSF (M-CSF), or stem cell factor. The transfer of activated NK cells with BMC into lethally irradiated syngeneic mice resulted in greater BMC engraftment in the recipients. Thus, these results using a pure population of activated NK cells indicate that when activated, these cells can produce a variety of growth factors for hematopoiesis and exert significant hematopoietic growth-promoting effects in vivo.


2008 ◽  
Vol 89 (3) ◽  
pp. 751-759 ◽  
Author(s):  
April Keim Parker ◽  
Wayne M. Yokoyama ◽  
John A. Corbett ◽  
Nanhai Chen ◽  
R. Mark L. Buller

Natural killer (NK) cells are known for their ability to lyse tumour cell targets. Studies of infections by a number of viruses, including poxviruses and herpesviruses, have demonstrated that NK cells are vital for recovery from these infections. Little is known of the ability of viruses to infect and complete a productive replication cycle within NK cells. Even less is known concerning the effect of infection on NK cell biology. This study investigated the ability of ectromelia virus (ECTV) to infect NK cells in vitro and in vivo. Following ECTV infection, NK cell gamma interferon (IFN-γ) production was diminished and infected cells ceased proliferating and lost viability. ECTV infection of NK cells led to early and late virus gene expression and visualization of immature and mature virus particles, but no detectable increase in viable progeny virus. It was not unexpected that early gene expression occurred in infected NK cells, as the complete early transcription system is packaged within the virions. The detection of the secreted early virus-encoded immunomodulatory proteins IFN-γ-binding protein and ectromelia inhibitor of complement enzymes (EMICE) in NK cell culture supernatants suggests that even semi-permissive infection may permit immunomodulation of the local environment.


2009 ◽  
Vol 16 (11) ◽  
pp. 1601-1606 ◽  
Author(s):  
Eva Maria Laabs ◽  
Wenhui Wu ◽  
Susana Mendez

ABSTRACT Cutaneous leishmaniasis due to Leishmania major is an emerging, chronic parasitic disease that causes disfigurement and social stigmatization. Drug therapy is inadequate, and there is no vaccine. Inoculation of virulent parasites (leishmanization) is the only intervention that has ever provided protection, because it mimics natural infection and immunity, but it was discontinued due to safety concerns (uncontrolled vaccinal lesions). In an effort to retain the benefits (immunity) while avoiding the side effects (lesions) of leishmanization, we immunized C57BL/6 mice with L. major and CpG DNA (Lm/CpG). This combination prevented lesions while inducing immunity. Also, the vaccination with live parasites and the Toll-like receptor 9 agonist enhanced innate immune responses by activating dermal dendritic cells (DCs) to produce cytokines. Here we report that the Lm/CpG vaccine induced dermal DCs, but not bone marrow-derived DCs, to produce interleukin-2 (IL-2). The release of this unusual DC-derived cytokine was concomitant with a peak in numbers of NK cells that produced gamma interferon (IFN-γ) and also enhanced activation of proliferation of IFN-γ+ CD4+ T cells. Parasite growth was controlled in Lm/CpG-vaccinated animals. This is the first demonstration of the ability of dermal DCs to produce IL-2 and of the activation of NK cells by vaccination in the context of leishmaniasis. Understanding how the Lm/CpG vaccine enhances innate immunity may provide new tools to develop vaccines against L. major, other chronic infectious diseases, or other conditions, such as cancer.


Blood ◽  
1992 ◽  
Vol 80 (3) ◽  
pp. 670-677 ◽  
Author(s):  
WJ Murphy ◽  
JR Keller ◽  
CL Harrison ◽  
HA Young ◽  
DL Longo

Purified natural killer (NK) cells were obtained from mice with severe combined immune deficiency (SCID) to ascertain their effect on hematopoiesis. When activated and propagated with recombinant human interleukin-2 (rhIL-2) in vitro, SCID spleen cells maintained a phenotypic and lytic spectrum consistent with a pure population of activated NK cells. When added with syngeneic bone marrow cells (BMC) in soft agar, the activated NK cells could support hematopoietic growth in vitro without the addition of exogenous hematopoietic growth factors. However, when syngeneic BMC were added along with cytokines to produce optimal growth conditions, the addition of NK cells was then inhibitory for hematopoietic colony formation. Antibodies to interferon- gamma (IFN-gamma) partially reversed the inhibitory effects. Supernatants from the NK-cell cultures could also exert these effects on hematopoiesis, although to a lesser extent. Analysis of the NK cell RNA demonstrated that activated NK cells express genes for hematopoietic growth factors such as granulocyte-macrophage colony- stimulating factor (GM-CSF), granulocyte CSF (G-CSF), and IL-1 beta. The NK cells were also found to express IFN-gamma, transforming growth factor-beta 1 (TGF-beta 1), and tumor necrosis factor-alpha (TNF-alpha) mRNA. Analysis of the NK-cell supernatants using factor-dependent myeloid progenitor cell lines showed that the NK cells were producing G- CSF and growth-promoting activity that could not be attributed to IL-1, IL-3, IL-4, IL-5, IL-6, GM-CSF, G-CSF, macrophage CSF (M-CSF), or stem cell factor. The transfer of activated NK cells with BMC into lethally irradiated syngeneic mice resulted in greater BMC engraftment in the recipients. Thus, these results using a pure population of activated NK cells indicate that when activated, these cells can produce a variety of growth factors for hematopoiesis and exert significant hematopoietic growth-promoting effects in vivo.


1984 ◽  
Vol 160 (4) ◽  
pp. 1147-1169 ◽  
Author(s):  
G Trinchieri ◽  
M Matsumoto-Kobayashi ◽  
S C Clark ◽  
J Seehra ◽  
L London ◽  
...  

The present study shows that recombinant interleukin 2 (IL-2) purified to homogeneity induces a rapid and potent enhancement of spontaneous cytotoxicity of human peripheral blood lymphocytes. The cells mediating cytotoxicity after 18-h treatment with IL-2 have surface markers of natural killer (NK) cells and are generated from the peripheral blood subset containing spontaneous cytotoxic cells. A parallel production of gamma interferon (IFN-gamma) is induced by recombinant IL-2 (rIL-2), and NK cells appear to be the major producer cells, whereas T cells are unable to produce IFN-gamma under these experimental conditions. However, the kinetics of the enhancement of cytotoxicity are faster than those of IFN-gamma production, and monoclonal anti-IFN-gamma antibodies do not suppress this effect, making it unlikely that the IFN-gamma produced is responsible for the enhancement. The enhancement of NK cell activity induced by rIL-2 precedes any proliferative response of the lymphocytes, which is instead observed in longer-term cultures of both NK and T cells.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1363
Author(s):  
Hansol Lee ◽  
Inês Pires Da Silva ◽  
Umaimainthan Palendira ◽  
Richard A. Scolyer ◽  
Georgina V. Long ◽  
...  

Natural killer (NK) cells are a key component of an innate immune system. They are important not only in initiating, but also in augmenting adaptive immune responses. NK cell activation is mediated by a carefully orchestrated balance between the signals from inhibitory and activating NK cell receptors. NK cells are potent producers of proinflammatory cytokines and are also able to elicit strong antitumor responses through secretion of perforin and granzyme B. Tumors can develop many mechanisms to evade NK cell antitumor responses, such as upregulating ligands for inhibitory receptors, secreting anti-inflammatory cytokines and recruiting immunosuppressive cells. Enhancing NK cell responses will likely augment the effectiveness of immunotherapies, and strategies to accomplish this are currently being evaluated in clinical trials. A comprehensive understanding of NK cell biology will likely provide additional opportunities to further leverage the antitumor effects of NK cells. In this review, we therefore sought to highlight NK cell biology, tumor evasion of NK cells and clinical trials that target NK cells.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 595
Author(s):  
Martina Molgora ◽  
Victor S. Cortez ◽  
Marco Colonna

Natural Killer cells belong to group 1 innate lymphoid cells, which also includes ILC1s. NK/ILC1s are highly heterogeneous cell types showing distinct phenotypes across tissues and conditions. NK cells have long been described as innate lymphocytes able to directly and rapidly kill tumor cells without antigen-restriction. Different mechanisms were shown to modulate NK cell activation and tumor resistance, mainly based on cytokine stimulation and receptor–ligand interactions, and several strategies have been developed to target NK cells in tumor immunotherapy to promote NK cell function and overcome tumor evasion. The characterization of ILC1 distinct phenotype and function and the specific role in tumors still needs further investigation and will be essential to better understand the impact of innate lymphoid cells in tumors. Here, we review key aspects of NK cell biology that are relevant in tumor immune surveillance, emphasizing the most recent findings in the field. We describe the novel therapeutical strategies that have been developed in tumor immunotherapy targeting NK cells, and we summarize some recent findings related to NK cell/ILC1 transition in tumor models.


2018 ◽  
Vol 24 (8) ◽  
pp. 452-465 ◽  
Author(s):  
José E Belizário ◽  
Jennifer M Neyra ◽  
Maria Fernanda Setúbal Destro Rodrigues

NK cells are innate lymphoid cells that exert a key role in immune surveillance through the recognition and elimination of transformed cells and viral, bacterial, and protozoan pathogen-infected cells without prior sensitization. Elucidating when and how NK cell-induced intracellular microbial cell death functions in the resolution of infection and host inflammation has been an important topic of investigation. NK cell activation requires the engagement of specific activating, co-stimulatory, and inhibitory receptors which control positively and negatively their differentiation, memory, and exhaustion. NK cells secrete diverse cytokines, including IFN-γ, TNF-α/β, CD95/FasL, and TRAIL, as well as cytoplasmic cytotoxic granules containing perforin, granulysin, and granzymes A and B. Paradoxically, NK cells also kill other immune cells like macrophages, dendritic cells, and hyper-activated T cells, thus turning off self-immune reactions. Here we first provide an overview of NK cell biology, and then we describe and discuss the life–death signals that connect the microbial pathogen sensors to the inflammasomes and finally to cell death signaling pathways. We focus on caspase-mediated cell death by apoptosis and pro-inflammatory and non-caspase-mediated cell death by necroptosis, as well as inflammasome- and caspase-mediated pyroptosis.


Blood ◽  
2004 ◽  
Vol 104 (6) ◽  
pp. 1778-1783 ◽  
Author(s):  
Anick Chalifour ◽  
Pascale Jeannin ◽  
Jean-François Gauchat ◽  
Aline Blaecke ◽  
Martine Malissard ◽  
...  

Abstract Although human CD56+CD3- natural killer (NK) cells participate in immune responses against microorganisms, their capacity to directly recognize and be activated by pathogens remains unclear. These cells encode members of the Toll-like receptor (TLR) family, involved in innate cell activation on recognition of pathogen-associated molecular patterns (PAMPs). We therefore evaluated whether the 2 bacterial protein PAMPs, the outer membrane protein A from Klebsiella pneumoniae (KpOmpA) and flagellin, which signal through TLR2 and TLR5, respectively, may directly stimulate human NK cells. These proteins induce interferon-γ (IFN-γ) production by NK cells and synergize with interleukin-2 (IL-2) and proinflammatory cytokines in PAMP-induced activation. Similar results were obtained using CD56+CD3+ (NKR-expressing) T cells. NK cells from TLR2-/- mice fail to respond to KpOmpA, demonstrating TLR involvement in this effect. Defensins are antimicrobial peptides expressed mainly by epithelial cells and neutrophils that disrupt the bacterial membrane, leading to pathogen death. We show that NK cells and NKR-expressing T cells constitutively express α-defensins and that KpOmpA and flagellin rapidly induce their release. These data demonstrate for the first time that highly purified NK cells directly recognize and respond to pathogen components through TLRs and evidence defensins as a novel and direct cytotoxic pathway involved in NK cell-mediated protection against microorganisms. (Blood. 2004;104:1778-1783)


Sign in / Sign up

Export Citation Format

Share Document