scholarly journals Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes.

1988 ◽  
Vol 168 (1) ◽  
pp. 107-126 ◽  
Author(s):  
R E Mandrell ◽  
J M Griffiss ◽  
B A Macher

We have used mouse mAbs, 3F11 and 06B4, that are specific for highly conserved epitopes of Neisseria gonorrhoeae lipooligosaccharides (LOS) to identify immunochemically similar structures on human erythrocytes. mAb 3F11 agglutinated erythrocytes from all randomly selected adult humans, while mAb 06B4 agglutinated only 80% of the same specimens. The antibodies had an activity with erythrocytes similar to human cold agglutinins in that agglutination occurred at 4 degrees C and decreased with increasing incubation temperature. Human infant erythrocytes were agglutinated less well, but enzymatic treatment of either infant or adult cells resulted in an increase in expression of the 3F11- and 06B4-defined epitopes. Both antibodies bound to a series of neutral glycosphingolipids from human erythrocytes and neutrophils that have a type 2 (Gal beta 1----4GlcNAc) or N-acetyllactosamine structure. Neither antibody bound to glycosphingolipids from human meconium, which have a type 1 (Gal beta 1----3GlcNAc) structure. The antibodies were unable to bind to N-acetyl-lactosamine glycosphingolipids with a nonreducing terminal sialic acid or a Gala1----3Gal disaccharide. Antibody binding also was blocked by the presence of fucose linked to the penultimate glucosamine residue of N-acetyllactosamine glycosphingolipids. Although both antibodies bound to linear and branched-chain N-acetyllactosamine glycosphingolipids, 3F11 had a higher affinity for branched structures than did 06B4. The activity of 3F11 with human adult and infant treated and untreated erythrocytes with N-acetyllactosamine glycosphingolipids, and with LOS was very similar, if not identical, in specificity to 1B2, an mAb prepared from mice inoculated with a linear N-acetyllactosamine glycosphingolipid.

1998 ◽  
Vol 273 (19) ◽  
pp. 11533-11543 ◽  
Author(s):  
Mario A. Monteiro ◽  
Kenneth H. N. Chan ◽  
David A. Rasko ◽  
Diane E. Taylor ◽  
P. Y. Zheng ◽  
...  

2004 ◽  
Vol 379 (3) ◽  
pp. 765-775 ◽  
Author(s):  
Sara LINDÉN ◽  
Thomas BORÉN ◽  
André DUBOIS ◽  
Ingemar CARLSTEDT

Mucins isolated from the stomach of Rhesus monkey are oligomeric glycoproteins with a similar mass, density, glycoform profile and tissue localization as human MUC5AC and MUC6. Antibodies raised against the human mucins recognize those from monkey, which thus appear to be orthologous to those from human beings. Rhesus monkey muc5ac and muc6 are produced by the gastric-surface epithelium and glands respectively, and occur as three distinct glycoforms. The mucins are substituted with the histo blood-group antigens B, Lea (Lewis a), Leb, Lex, Ley, H-type-2, the Tn-antigen, the T-antigen, the sialyl-Lex and sialyl-Lea structures, and the expression of these determinants varies between individuals. At neutral pH, Helicobacter pylori strains expressing BabA (blood-group antigen-binding adhesin) bind Rhesus monkey gastric mucins via the Leb or H-type-1 structures, apparently on muc5ac, as well as on a smaller putative mucin, and binding is inhibited by Leb or H-type-1 conjugates. A SabA (sialic acid-binding adhesin)-positive H. pylori mutant binds to sialyl-Lex-positive mucins to a smaller extent compared with the BabA-positive strains. At acidic pH, the microbe binds to mucins substituted by sialylated structures such as sialyl-Lex and sialylated type-2 core, and this binding is inhibited by DNA and dextran sulphate. Thus mucin–H. pylori binding occurs via at least three different mechanisms: (1) BabA-dependent binding to Leb and related structures, (2) SabA-dependent binding to sialyl-Lex and (3) binding through a charge-mediated mechanism to sialylated structures at low pH values.


Author(s):  
Yanislava Karusheva ◽  
Klaus Strassburger ◽  
Daniel F Markgraf ◽  
Oana-Patricia Zaharia ◽  
Kálmán Bódis ◽  
...  

Abstract Context In addition to unfavourable effects on insulin sensitivity, elevated plasma branched-chain amino acids (BCAA) stimulate insulin secretion, which in the long-term could impair pancreatic β-cell function. Objective To investigate cross-sectional and prospective associations between circulating BCAA and postprandial β-cell function in recently diagnosed type 1 and type 2 diabetes. Methods The study included individuals with well-controlled type 1 and type 2 diabetes (known diabetes duration <12 months) and glucose tolerant humans (control) of similar age, sex and BMI (n=10/group) underwent mixed meal tolerance tests. Plasma BCAA levels were quantified by gas chromatography-mass spectrometry, postprandial β-cell function was assessed from serum C-peptide levels and insulin sensitivity from PREDIM index (PREDIcted M-value). Results In type 1 diabetes, postprandial total BCAA, valine and leucine levels were 25%, 18% and 19% higher versus control, and total as well as individual postprandial BCAA related inversely to C-peptide levels. In type 2 diabetes, postprandial isoleucine was 16% higher versus the respective controls, while neither total nor individual BCAA correlated with C-peptide levels. Whole body insulin sensitivity was lower in both diabetes groups than in corresponding controls. In conclusion, insulin deficiency associates with sustained high BCAA concentrations which could contribute to exhausting the insulin secretory reserve in early type 1 diabetes.


2008 ◽  
Vol 82 (21) ◽  
pp. 10756-10767 ◽  
Author(s):  
Haruko Shirato ◽  
Satoko Ogawa ◽  
Hiromi Ito ◽  
Takashi Sato ◽  
Akihiko Kameyama ◽  
...  

ABSTRACT Norovirus (NoV) is a causative agent of acute gastroenteritis. NoV binds to histo-blood group antigens (HBGAs), namely, ABH antigens and Lewis (Le) antigens, in which type 1 and type 2 carbohydrate core structures constitute antigenically distinct variants. Norwalk virus, the prototype strain of norovirus, binds to the gastroduodenal junction, and this binding is correlated with the presence of H type 1 antigen but not with that of H type 2 antigen (S. Marionneau, N. Ruvoen, B. Le Moullac-Vaidye, M. Clement, A. Cailleau-Thomas, G. Ruiz-Palacois, P. Huang, X. Jiang, and J. Le Pendu, Gastroenterology 122:1967-1977, 2002). It has been unknown whether NoV distinguishes between the type 1 and type 2 chains of A and B antigens. In this study, we synthesized A type 1, A type 2, B type 1, and B type 2 pentasaccharides in vitro and examined the function of the core structures in the binding between NoV virus-like particles (VLPs) and HBGAs. The attachment of five genogroup I (GI) VLPs from 5 genotypes and 11 GII VLPs from 8 genotypes, GI/1, GI/2, GI/3, GI/4, GI/8, GII/1, GII/3, GII/4, GII/5, GII/6, GII/7, GII/12, and GII/14, to ABH and Le HBGAs was analyzed by enzyme-linked immunosorbent assay-based binding assays and Biacore analyses. GI/1, GI/2, GI/3, GI/4, GI/8, and GII/4 VLPs were more efficiently bound to A type 2 than A type 1, and GI/8 and GII/4 VLPs were more efficiently bound to B type 2 than B type 1, indicating that NoV VLPs distinguish between type 1 and type 2 carbohydrates. The dissociation of GII/4 VLPs from B type 1 was slower than that from B type 2 in the Biacore experiments; moreover, the binding to B type 1 was stronger than that to B type 2 in the ELISA experiments. These results indicated that the type 1 carbohydrates bind more tightly to NoV VLPs than the type 2 carbohydrates. This property may afford NoV tissue specificity. GII/4 is known to be a global epidemic genotype and binds to more HBGAs than other genotypes. This characteristic may be linked with the worldwide transmission of GII/4 strains. GI/2, GI/3, GI/4, GI/8, GII/4, and GII/7 VLPs bound to Lea expressed by nonsecretors, suggesting that NoV can infect individuals regardless of secretor phenotype. Overall, our results indicated that HBGAs are important factors in determining tissue specificity and the risk of transmission.


Author(s):  
Younes Sadeghi-Bojd ◽  
Naser Amirizadeh ◽  
Arezoo Oodi

Background: The D antigen is a subset of Rh blood group antigens involved in the hemolytic disease of the newborn [HDFN] and hemolytic transfusion reaction [HTR]. The hybrid Rhesus box that was created after RH gene deletion, was known as a mechanism of the Rh-negative phenotype. Hybrid marker identification is used to confirm the deletion of the RHD gene and to determine zygosity. This study aims to detect this marker in Rh-negative and weak D phenotype blood donors of the southeast of Iran. Materials and Methods: The molecular analysis of the hybrid Rhesus box was performed on the 200 Rh-negative blood donors in Sistan and Baluchestan province, southeast Iran. The presence of alleles responsible for the D variants was assessed by DNA sequencing in 26 weak D phenotype donors. Results: Of the 200 Rh-negative blood samples, 198 samples were homozygous (99%), and two samples were heterozygous (1%). Heterozygous samples had RHD*01N.73 allele and the RHD*01N.18 allele. Of the 26 samples with weak D phenotype, 16 partial DLO (61%), 4 partial DBT1 (15.3%), 2 partial DV type 2 (7.7%), 1 weak D type 1, 1 weak D type 4.2.3, 1weak D type 105 and 1 RHD (S103P) (4%) were determined. Conclusion: Since RHD gene deletion is the main mechanism of the Rh-negativity in Sistan and Baluchestan provinces, a hybrid Rhesus box marker can be used in resolving RhD typing discrepancies by RHD genotyping methods.


1973 ◽  
Vol 133 (1) ◽  
pp. 117-123 ◽  
Author(s):  
W. R. A. Osborne ◽  
N. Spencer

1. The partial purification of adenosine deaminase, types 1, 2 and 2–1, from human erythrocytes is described. 2. The isoenzyme components characteristic of the three forms of the enzyme were partially resolved by chromatography on DEAE-Sephadex. 3. Gel chromatography of the various forms of the enzyme gave estimates of the molecular weights in the range 30000–35000. 4. Electrophoresis in starch gels containing increasing percentages of starch did not reveal any differences in molecular weight between the genetic variants or their isoenzyme components. 5. Analytical isoelectric-focusing experiments in polyacrylamide gels gave the following pI values for the four isoenzyme components present in type 2–1 erythrocytes: 4.70, 4.83, 4.94 and 5.06. 6. All forms of the enzyme gave Km values for adenosine of about 30μm and Ki values of about 8μm for the competitive inhibitor purine riboside. 7. Reaction rates of the type 1 and 2 enzymes were measured at different temperatures. Both enzymes gave values for the energy of activation for hydrolysis of adenosine of about 33.4kJ/mol (8kcal/mol). 8. Heat inactivation of all forms of the enzyme was markedly dependent on ionic strength, the rate of inactivation increasing with increasing ionic strength. The type 1 and type 2 forms of the enzyme differed significantly in their susceptibility to heat inactivation. From the variation of rates of inactivation with temperature, values were obtained for the energies of activation for the heat inactivation of both enzymes as follows: type 1 enzyme 275.5kJ/mol (65.9kcal/mol) and type 2 enzyme 241.6kJ/mol (57.8kcal/mol.).


2008 ◽  
Vol 38 (15) ◽  
pp. 18
Author(s):  
SHERRY BOSCHERT
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document