scholarly journals Different stromal cell lines support lineage-selective differentiation of the multipotential bone marrow stem cell clone LyD9.

1991 ◽  
Vol 173 (5) ◽  
pp. 1257-1266 ◽  
Author(s):  
K H Lee ◽  
T Kinashi ◽  
K Tohyama ◽  
K Tashiro ◽  
N Funato ◽  
...  

An interleukin 3-dependent multipotential stem cell clone, LyD9, has been shown to generate mature B lymphocytes, macrophages, and neutrophils by coculture with primary bone marrow stromal cells. We report here that coculture with the cloned stromal cell lines PA6 and ST2 can support differentiation of LyD9 cells predominantly into granulocyte/macrophage colony-stimulating factor (GM-CSF)- and granulocyte (G)-CSF-responsive cells, respectively. However, these stromal cell lines were unable to support lymphopoiesis of LyD9 cells. The GM-CSF-dependent line, L-GM, which was derived from LyD9 cells cocultured with PA6 stromal cells, could differentiate into macrophages and granulocytes in the presence of GM-CSF. The L-GM line can further differentiate predominantly into neutrophils by coculture with ST2 stromal cells. The G-CSF-dependent line, L-G, which was derived from LyD9 cells cocultured with ST2 stromal cells, differentiated into neutrophils in response to G-CSF. Although the stromal cell-supported differentiation of LyD9 cells required the direct contact between LyD9 and stromal cells, a small fraction of LyD9 cells that were pretreated with 5-azacytidine could differentiate into neutrophils and macrophages without direct contact with stromal cells. These results indicate that different stromal cell lines support lineage-selective differentiation of the LyD9 stem cell and that 5-azacytidine treatment can bypass the requirement of direct contact with stromal cells, albeit with a lower frequency.

Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 3079-3089
Author(s):  
J Mladenovic ◽  
SM Anderson

The S17 murine stromal cell line was infected with retroviral vectors encoding the v-src and c-src oncogenes and cells expressing high levels of either pp60v-src or pp60c-src were isolated. Long-term bone marrow cultures (LTBMCs) established with these different stromal cell lines showed that progenitor cells proliferated to a greater extent in cultures with stromal cells that over-expressed either c-src or v-src. An increase in the number of granulocytes, monocytes, and colony- forming units granulocyte-macrophage (CFU-GM) in the nonadherent cell population of LTBMCs prepared with S17/v-src or S17/c-src stromal cells was observed. Conditioned media from the S17/v-src and S17/src stromal cell lines stimulated the formation of CFU-GM in the absence of additional hematopoietic cell growth factors. Conditioned media from S17/v-src and S17/c-src stimulated proliferation of the granulocyte- macrophage colony-stimulating factor (GM-CSF)-responsive cell line FDCP-1 and this stimulation was inhibited by neutralizing antisera to murine GM-CSF. An increase in the concentration of GM-CSF was confirmed by enzyme-linked immunosorbent assay. No secretion of interleukin-1 alpha (IL-1 alpha) or tumor necrosis factor-alpha was detected by any of the stromal cell lines. There was no increase in the secretion of either CSF-1 or IL-6 by either S17/v-src or S17/c-src. The addition of 1 micrograms/mL monoclonal anti-GM-CSF antibody to LTBMCs caused a decrease in the number of nonadherent cells in cultures established with each of the different stromal cell lines. Northern blot analysis showed no difference in the level of GM-CSF RNA among the different stromal cell lines. These studies suggest that the increased proliferation of hematopoietic progenitor cells in LTBMCs with S17/v-src or S17/c-src cells may result from a posttranscriptional event that elevates production of GM-CSF by the S17/c-src and S17/v-src stromal cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2508-2508
Author(s):  
Michael Kline ◽  
Kathleen Donovan ◽  
Linda Wellik ◽  
Christopher Lust ◽  
Wendy Jin ◽  
...  

Abstract Background: Multiple myeloma (MM) is an incurable hematological malignancy characterized by the expansion of a plasma cell clone that localizes to the bone marrow. Stromal cells residing in the bone marrow respond to signals from MM cells and other cell types by producing cytokines and other proteins that stimulate tumor cell growth, survival, adhesion, migration, and drug resistance. We have examined the proteins produced by stromal cells in response to stimulation by bone marrow from patients diagnosed with monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and MM. Furthermore, we have begun analyzing the properties of one of these proteins, the pro-angiogenic chemokine IL-8, in MM. Methods: Bone marrow aspirates from patients with MGUS (n=3), SMM (n=7), and MM (n=6) were cultured for 48 hours, and the culture supernatants were incubated with stromal cells for an additional 48 hours. Protein levels were analyzed using antibody array and ELISA. Microvessel density (MVD) was determined as a measure of angiogenesis in patient bone marrow samples using CD34 staining. Flow cytometry analysis of MM cell lines and patient bone marrow samples was performed using monoclonal antibodies against IL-8 receptors CXCR1 and CXCR2. Results and Conclusion: We observed a significant increase in stromal cell IL-8 production stimulated by bone marrow cells from patients with active myeloma and a subset of SMM patients (16.67 ± 9.82 ng/ml) in comparison to bone marrow of patients with MGUS and all other SMM patients (0.55 ± 0.17 ng/ml; P=0.0004). Use of an IL-1 inhibitor and recombinant IL-1β demonstrated that IL-8 production was dependent upon IL-1β signaling. Increased BM microvessel density correlated with stimulation of stromal cell IL-8 production (P=0.0005). Furthermore, the majority of MM cell lines (7/9) and MM patient plasma cells were found to express IL-8 receptors CXCR1 and CXCR2. In addition to its function as a pro-angiogenic factor, IL-8 may directly influence MM cells through its CXCR1 and CXCR2 receptors. We conclude that stromal cell IL-8 production parallels MM disease activity, is IL-1β induced, correlates with bone marrow angiogenesis, and may influence MM disease via impact upon both the microenvironment and tumor cells.


Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 3079-3089 ◽  
Author(s):  
J Mladenovic ◽  
SM Anderson

Abstract The S17 murine stromal cell line was infected with retroviral vectors encoding the v-src and c-src oncogenes and cells expressing high levels of either pp60v-src or pp60c-src were isolated. Long-term bone marrow cultures (LTBMCs) established with these different stromal cell lines showed that progenitor cells proliferated to a greater extent in cultures with stromal cells that over-expressed either c-src or v-src. An increase in the number of granulocytes, monocytes, and colony- forming units granulocyte-macrophage (CFU-GM) in the nonadherent cell population of LTBMCs prepared with S17/v-src or S17/c-src stromal cells was observed. Conditioned media from the S17/v-src and S17/src stromal cell lines stimulated the formation of CFU-GM in the absence of additional hematopoietic cell growth factors. Conditioned media from S17/v-src and S17/c-src stimulated proliferation of the granulocyte- macrophage colony-stimulating factor (GM-CSF)-responsive cell line FDCP-1 and this stimulation was inhibited by neutralizing antisera to murine GM-CSF. An increase in the concentration of GM-CSF was confirmed by enzyme-linked immunosorbent assay. No secretion of interleukin-1 alpha (IL-1 alpha) or tumor necrosis factor-alpha was detected by any of the stromal cell lines. There was no increase in the secretion of either CSF-1 or IL-6 by either S17/v-src or S17/c-src. The addition of 1 micrograms/mL monoclonal anti-GM-CSF antibody to LTBMCs caused a decrease in the number of nonadherent cells in cultures established with each of the different stromal cell lines. Northern blot analysis showed no difference in the level of GM-CSF RNA among the different stromal cell lines. These studies suggest that the increased proliferation of hematopoietic progenitor cells in LTBMCs with S17/v-src or S17/c-src cells may result from a posttranscriptional event that elevates production of GM-CSF by the S17/c-src and S17/v-src stromal cells.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 682-691 ◽  
Author(s):  
D Rennick ◽  
G Yang ◽  
L Gemmell ◽  
F Lee

A stromal cell line, GY30, was cloned from mouse bone marrow adherent cell layers. In culture, GY30 cells sustain the production of granulocyte-macrophage progenitor cells (GM-CFU) but fail to support the survival of pluripotential stem cells (CFU-S). GY30 cells secrete two growth factor activities distinct from interleukin-3 (IL-3), IL-2, and macrophage colony-stimulating factor (M-CSF) but functionally similar to GM-CSF and G-CSF. The production of both CSFs is increased 70- to 200-fold by treating GY30 cells with lipopolysaccharide or IL-1. RNA blot analysis reveals the presence of GM-CSF and G-CSF transcripts and demonstrates that IL-1 regulates the production of both factors at the mRNA level. Further, these studies show that the GM-CSF secreted by GY30 cells is structurally similar to the GM-CSF produced by activated T cells.


1991 ◽  
Vol 173 (5) ◽  
pp. 1267-1279 ◽  
Author(s):  
T Kinashi ◽  
K H Lee ◽  
M Ogawa ◽  
K Tohyama ◽  
K Tashiro ◽  
...  

We are interested to know whether expression of a lineage-specific growth factor receptor is deterministic to lineage commitment during hematopoiesis. For this purpose, we introduced the human c-fms gene into the multipotential stem cell clone LyD9 and two myeloid progenitor clones, L-GM3 and L-G3, cells that differentiate in response to granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte (G)-CSF, respectively. Although LyD9 cells have differentiation potential to become macrophages, c-fms transfectants of LyD9 and L-GM3 cells did not differentiate in response to human macrophage (M)-CSF. However, c-fms transfectants of L-G3 cells differentiated to neutrophils in response to human M-CSF. These results indicate that the M-CSF receptor requires a specific signal transduction pathway to exert its differentiational and proliferative effects. Furthermore, the M-CSF receptor can convey a granulocyte-type differentiation signal possibly by cooperating with the G-CSF receptor signal transduction pathway. The c-fms-transfected LyD9 cells as well as the original LyD9 cells differentiated predominantly into GM-CSF- and G-CSF-responsive cells by coculturing with PA6 and ST2 stromal cells, respectively. The results indicate that differentiation lineage is not affected by premature expression of the M-CSF receptor. Instead, the stromal cell used for coculture apparently controls lineage-selective differentiation of the multi-potential stem cell line.


Blood ◽  
2000 ◽  
Vol 95 (5) ◽  
pp. 1642-1651 ◽  
Author(s):  
Sara E. J. Cotterell ◽  
Christian R. Engwerda ◽  
Paul M. Kaye

Alterations in hematopoiesis are common in experimental infectious disease. However, few studies have addressed the mechanisms underlying changes in hematopoietic function or assessed the direct impact of infectious agents on the cells that regulate these processes. In experimental visceral leishmaniasis, caused by infection with the protozoan parasite Leishmania donovani, parasites persist in the spleen and bone marrow, and their expansion in these sites is associated with increases in local hematopoietic activity. The results of this study show that L donovani targets bone marrow stromal macrophages in vivo and can infect and multiply in stromal cell lines of macrophage, but not other lineages in vitro. Infection of stromal macrophages increases their capacity to support myelopoiesis in vitro, an effect mediated mainly through the induction of granulocyte macrophage-colony stimulating factor and tumor necrosis factor-. These data are the first to directly demonstrate that intracellular parasitism of a stromal cell population may modify its capacity to regulate hematopoiesis during infectious disease.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2328-2328
Author(s):  
Katja C. Weisel ◽  
Ying Gao ◽  
Jae-Hung Shieh ◽  
Lothar Kanz ◽  
Malcolm A.S. Moore

Abstract The aorta-gonads-mesonephros (AGM) region autonomously generates adult repopulating hematopoietic stem cells (HSC) in the mouse embryo and provides its own HSC-supportive microenvironment. Stromal cells from adult bone marrow, yolk sac, fetal liver and AGM have been used in coculture systems for analysing growth, maintenance and differentiation of hematopoietic stem cells. We generated >100 cloned stromal cell lines from the AGM of 10.5 dpc mouse embryos. In previous studies, we tested these for support of murine adult and human cord blood (CB) CD34+ cells. We could demonstrate that 25 clones were superior to the MS5 bone marrow stromal cell line in supporting progenitor cell expansion of adult mouse bone marrow both, in 2ndry CFC and CAFC production. In addition we demonstrated that 5 AGM lines promoted in absence of exogenous growth factors the expansion of human CB cells with progenitor (CFC production for at least 5 weeks) and stem cell (repopulation of cocultured cells in NOD/SCID assay) function. Now, we could show that one of the isolated stromal cell lines (AGM-S62) is capable in differentiating undifferentiated murine embryonic stem (mES) cells into cells of the hematopoietic lineage. A sequential coculture of mES-cells with AGM-S62 showed production of CD41+ hematopoietic progenitor cells at day 10 as well as 2ndry CFC and CAFC production of day 10 suspension cells. Hematopoietic cell differentiation was comparable to standard OP9 differentiation assay. With these data, we can describe for the first time, that a stromal cell line other than OP9 can induce hematopoietic differentiation of undifferentiated mES cells. Hematopoietic support occurs independently of M-CSF deficiency, which is the characteristic of OP9 cells, because it is strongly expressed by AGM-S62. To evaluate genes responsible for hematopoietic cell support, we compared a supporting and a non-supporting AGM stromal cell line by microarray analysis. The cell line with hematopoietic support clearly showed a high expression of mesenchymal markers (laminins, thrombospondin-1) as well as characteristic genes for the early vascular smooth muscle phenotype (Eda). Both phenotypes are described for stromal cells with hematopoietic support generated from bone marrow and fetal liver. In addition, the analysed supporting AGM stromal cell line interestingly expressed genes important in early B-cell differentiation (osteoprotegerin, early B-cell factor 1, B-cell stimulating factor 3), which goes in line with data demonstrating early B-cell development in the AGM-region before etablishing of fetal liver hematopoiesis. Further studies will show the significance of single factors found to be expressed in microarray analyses. This unique source of > 100 various cell lines will be of value in elucidating the molecular mechanisms regulating embryonic and adult hematopoiesis in mouse and man.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 242-242
Author(s):  
Xin Long ◽  
Tsz-Kwong Man ◽  
Michele S. Redell

Abstract Abstract 242 Overall objective: AML is a devastating malignancy with a relapse rate near 50% in children, despite very toxic chemotherapy. Once a child relapses, the chance of survival is very low. Therefore new, rational therapies for AML are desperately needed. Accumulating evidence shows that the bone marrow stromal environment protects a subset of leukemia cells and allows them to survive chemotherapy, eventually leading to recurrence. Our goal is to delineate the mechanisms underlying stroma-mediated chemotherapy resistance in AML cells, which could potentially lead to new therapies for AML. Methods, Results & Conclusions: We used two human bone marrow stromal cell lines, HS-5 and HS-27 for our studies. Both provide physical contact with AML cells, while HS-5 cells secrete many more cytokines and growth factors than HS-27 stromal cells. To verify the difference between HS-5 and HS-27 in their secreted soluble factors, both stroma-conditioned media were harvested and soluble factors were quantified by multiplex cytokine assay for 42 individual soluble factors. We detected 23 factors in HS-5 conditioned medium, including G-CSF, IL-6, and MCP-3 at very high levels. HS-27-conditioned medium contained only a few cytokines at similar levels as HS-5, e.g., VEGF and Fractalkine. Next, we performed co-culture experiments to determine the ability of each stromal cell line to confer resistance to chemotherapy. Human AML cell lines (NB-4, THP-1 and Kasumi-1) were cultured alone or co-cultured with HS-5 or HS-27 cells, and treated with etoposide, mitoxantrone or cytarabine for 48 hours. Cells were then harvested and labeled with annexin V-FITC. Stromal cells were identifiable by stable mOrange expression, and the percentage of apoptotic AML cells (FITC positive and mOrange negative) was determined by FACS. Both HS-5 (p<0.001) and HS-27 (p<0.05) cells protected NB-4 and THP-1 cells from etoposide-induced apoptosis (apoptosis rate at the 3 uM dose: 86.6±1.4% NB-4 alone vs. 33.9±2.9% with HS-5 vs 60.7±2.5% with HS-27). The results with THP-1 were similar to NB-4. Using the same method, we demonstrated that both stromal cells protected NB-4 and THP-1 from the toxic effects of all three chemotherapy agents; Kasumi-1 were resistant to all three agents, even when cultured alone. To delineate if the protection induced by stromal cells against chemotherapy was dependent on adhesion pathways and/or soluble factors, we performed Transwell co-culture assays. Different from regular co-culture, there is no physical contact between AML and stromal cells, while soluble factors secreted by stromal cells can reach AML cells. In the absence of physical contact, both stromal cells provided little protection for NB-4 and THP-1 against etoposide and cytarabine; while both NB-4 and THP-1 were still protected against mitoxantrone. Those results suggest that the protection provided by both stromal cells against etoposide and cytarabine mostly relies on cell-cell contact; as for mitoxantrone, soluble factors secreted by both stromal cells seem more important. Surprisingly, HS-5 and HS-27 provided similar degrees of protection against all three chemotherapies. To discover genes in AML cells that are induced by interaction with stromal cells and may contribute to chemotherapy resistance, oligonucleotide microarray analysis was done using total RNA extracted from NB-4 and THP-1 cells cultured alone or co-cultured with stromal cells. We found that 43 genes were upregulated by HS-5, and over 1000 genes were either up- or down-regulated by HS-27. Among them, eighteen genes were upregulated by both stromal cell lines. Since HS-5 and HS-27 provided similar degrees of protection against chemotherapy, those eighteen commonly upregulated genes are likely to be important for stroma-induced chemotherapy resistance. Excitingly, seven out of those eighteen genes, e.g., including CYR61, CAV1, TM4SF1, have been reported to contribute to chemotherapy resistance in various cancer types. Further studies are underway to determine if those genes are responsible for stroma-induced chemotherapy resistance. This study suggests that distinct pathways in the microenvironment mediate resistance to different chemotherapy drugs. Elucidating the precise drug-specific mechanisms involved is likely to result in promising combination therapies to reduce chemotherapy resistance and relapse, and thereby improve survival for children with AML. Disclosures: No relevant conflicts of interest to declare.


1992 ◽  
Vol 176 (4) ◽  
pp. 927-935 ◽  
Author(s):  
K Jacobsen ◽  
K Miyake ◽  
P W Kincade ◽  
D G Osmond

B lymphocyte precursor cells in mouse bone marrow develop in close association with stromal cells which provide essential growth signals. To identify molecules that may normally play a role in this interaction we have examined the in vivo binding of a new monoclonal antibody (mAb) (KMI6) that recognizes a determinant on a bone marrow stromal cell line (BMS2) in vitro. Flow cytometric and radioautographic evaluations revealed that the antigen recognized by KMI6 is represented on the surface of an extremely small number of cells in bone marrow cell suspensions from adult mice. An apparent molecular mass of 110 kD was obtained by surface labeling of a stromal cell clone and immunoprecipitation. Purified mAb KMI6 labeled with 125I was then given intravenously to young C3H/HeJ mice. Unbound mAb was washed out by cardiac perfusion and femoral bone marrow was examined by light and electron microscope radioautography. KMI6 labeling was heavy on the plasma membrane of many stromal cells, especially those located towards the outer subosteal region. The KMI6-labeled stromal cells were usually associated with cells of lymphoid morphology which they often completely surrounded. The labeling was restricted to areas of stromal cell plasma membranes in contact with lymphoid cells. The lymphoid cells themselves, as well as macrophages and other hemopoietic cells, failed to bind mAb KMI6 significantly. Stromal cells in bone marrow depleted of hemopoietic cells by gamma-irradiation (9,5 Gy) bound mAb KMI6 at reduced intensity. The results demonstrate that the KMI6 determinant, a 110-kD protein, is expressed on bone marrow stromal cells in vivo. Its restriction to areas of interaction with lymphoid cells suggests a role in forming microenvironmental niches of B lymphopoiesis. The surface membrane of individual stromal cells may thus be functionally polarized towards interacting B cell precursors and other hemopoietic cells.


1991 ◽  
Vol 173 (2) ◽  
pp. 373-381 ◽  
Author(s):  
T Kina ◽  
A S Majumdar ◽  
S Heimfeld ◽  
H Kaneshima ◽  
B Holzmann ◽  
...  

The mechanism of cell complex formation between lymphocytes and stromal cells was investigated. We found that lymphoid lines of both T and B lineages could form cell complexes with stromal cells from the thymus as well as bone marrow but not with macrophages or typical fibroblast lines. Formation of these cell complexes is temperature dependent and requires the presence of Mg2+, active cellular metabolism, and microfilament assembly of cytoskeleton. We raised an antiserum against a thymic stromal cell clone (BATE-2) in rats and found that, after absorption, this serum could effectively block cell complex formation between lymphocytes and stromal cells from both thymus and bone marrow. An efficient blocking was obtained only when the antiserum was added at the initial stage of cell interaction. From the blocking experiments and the SDS-PAGE analysis of immunoprecipitated materials from the stromal cell surface, we identified a unique 107-kD glycoprotein on the stromal cells as a molecule for mediating stromal cell-lymphocyte interaction. This is further supported by the findings that an antiserum raised in hamsters against the excised gel band corresponding to 107 kD, which specifically immunoprecipitated the 107-kD molecule, effectively blocked the lymphocyte-stromal cell interaction. The possible function of this molecule in hematolymphoid development is discussed.


Sign in / Sign up

Export Citation Format

Share Document