scholarly journals Unusual patterns of immunoglobulin gene rearrangement and expression during human B cell ontogeny: human B cells can simultaneously express cell surface kappa and lambda light chains.

1993 ◽  
Vol 178 (1) ◽  
pp. 139-149 ◽  
Author(s):  
M E Pauza ◽  
J A Rehmann ◽  
T W LeBien

Immunoglobulin gene rearrangement during mammalian B cell development generally follows an ordered progression, beginning with heavy (H) chain genes and proceeding through kappa and lambda light (L) chain genes. To determine whether the predicted kappa-->lambda hierarchy was occurring in vitro, we generated Epstein-Barr virus-transformed cell lines from cultures undergoing human pre-B cell differentiation. A total of 143 cell lines were established. 24 expressed cell surface mu/lambda by flow cytometry and were clonal by Southern blotting. Surprisingly, two of the mu/lambda-expressing cell lines contained both kappa alleles in germline configuration, and synthesis/expression of conventional lambda L chains was directly proven by immunoprecipitation/sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in one of them. Thus, human fetal bone marrow B lineage cells harbor the capacity to make functional lambda L chain gene rearrangements without rearranging or deleting either kappa allele. A third unusual cell line, designated 30.30, was observed to coexpress cell surface kappa and lambda L chains associated with mu H chains. The 30.30 cell line had a diploid karyotype, a single H chain rearrangement, both kappa alleles rearranged, and a single lambda rearrangement. Immunoprecipitation/SDS-PAGE confirmed that 30.30 cells synthesized and expressed kappa and lambda L chains. Multiparameter flow cytometry was used to demonstrate the existence of kappa+/lambda+ cells in fetal bone marrow and fetal spleen at frequencies of 2-3% of the total surface Ig+ B cell population. The flow cytometry data was confirmed by two-color immunofluorescence microscopy. The existence of normal human B cells expressing cell surface kappa and lambda refutes the widely accepted concept that expression of a single L chain isotype is immutable. The kappa+/lambda+ cells may represent transients undergoing L chain isotype switching.

1993 ◽  
Vol 13 (7) ◽  
pp. 3890-3899
Author(s):  
L C Wang ◽  
N Rosenberg

To probe the factors controlling immunoglobulin heavy-chain gene rearrangement, we analyzed Abelson virus-transformed pre-B-cell lines that fail to undergo VH-to-DJH joining at an appreciable frequency. Despite this feature, some of these cell lines (rechi) rearrange an extrachromosomal recombination substrate at levels normal for transformed pre-B cells. Others (reclo) rearrange these substrates at levels characteristic of nonlymphoid hematopoietic cells. The DJH rearrangements from a representative rechi cell line were aberrant, suggesting that these cells probably fail to complete heavy-chain gene assembly because some of the necessary cis-acting signals are missing. In contrast, both DJH rearrangements from a reclo cell line appeared normal in structure, indicating that trans-acting factors necessary for recombination might be missing. Introduction of the RAG-1 and RAG-2 genes, genes encoding two such factors, failed to confer a rechi phenotype to these cells. However, fusion of the reclo cells to a rechi cell line generated a high frequency of rechi hybrids. In addition, most of the hybrids rearranged the endogenous kappa light-chain locus. Neither the rechi phenotype nor kappa-chain rearrangement correlated with levels of RAG-1 and RAG-2 expression in all of the hybrids. Thus, both gene transfer and cell fusion experiments indicate that RAG-1 and RAG-2 are not sufficient to activate immunoglobulin gene recombination in at least some pre-B-cell lines. In addition, the fusion experiments suggest that two gene products in addition to RAG-1 and RAG-2 may be required for kappa-gene rearrangement.


1993 ◽  
Vol 13 (7) ◽  
pp. 3890-3899 ◽  
Author(s):  
L C Wang ◽  
N Rosenberg

To probe the factors controlling immunoglobulin heavy-chain gene rearrangement, we analyzed Abelson virus-transformed pre-B-cell lines that fail to undergo VH-to-DJH joining at an appreciable frequency. Despite this feature, some of these cell lines (rechi) rearrange an extrachromosomal recombination substrate at levels normal for transformed pre-B cells. Others (reclo) rearrange these substrates at levels characteristic of nonlymphoid hematopoietic cells. The DJH rearrangements from a representative rechi cell line were aberrant, suggesting that these cells probably fail to complete heavy-chain gene assembly because some of the necessary cis-acting signals are missing. In contrast, both DJH rearrangements from a reclo cell line appeared normal in structure, indicating that trans-acting factors necessary for recombination might be missing. Introduction of the RAG-1 and RAG-2 genes, genes encoding two such factors, failed to confer a rechi phenotype to these cells. However, fusion of the reclo cells to a rechi cell line generated a high frequency of rechi hybrids. In addition, most of the hybrids rearranged the endogenous kappa light-chain locus. Neither the rechi phenotype nor kappa-chain rearrangement correlated with levels of RAG-1 and RAG-2 expression in all of the hybrids. Thus, both gene transfer and cell fusion experiments indicate that RAG-1 and RAG-2 are not sufficient to activate immunoglobulin gene recombination in at least some pre-B-cell lines. In addition, the fusion experiments suggest that two gene products in addition to RAG-1 and RAG-2 may be required for kappa-gene rearrangement.


1988 ◽  
Vol 168 (4) ◽  
pp. 1363-1381 ◽  
Author(s):  
J Manz ◽  
K Denis ◽  
O Witte ◽  
R Brinster ◽  
U Storb

Previous work (6-10) has shown that allelic exclusion of Ig gene expression is controlled by functionally rearranged mu and kappa genes. This report deals with the comparison of membrane mu (micron) and secreted mu (microsecond) in promoting such feedback inhibition. Splenic B cell hybridomas were analyzed from transgenic mice harboring a rearranged kappa gene alone or in combination with either an intact rearranged mu gene or a truncated version of the mu gene. The intact mu gene is capable of producing both membrane and secreted forms of the protein, while the truncated version can only encode the secreted form. The role of the microsecond was also tested in pre-B cell lines. Analysis of the extent of endogenous Ig gene rearrangement revealed that (a) the production of micron together with kappa can terminate Ig gene rearrangement; (b) microsecond with kappa does not have this feedback effect; (c) microsecond may interfere with the effect of micron and kappa; and (d) the feedback shown here probably represents a complete shutoff of the specific recombinase by micron + kappa; the data do not address the question of mu alone affecting the accessibility of H genes for rearrangement.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2328-2328
Author(s):  
Katja C. Weisel ◽  
Ying Gao ◽  
Jae-Hung Shieh ◽  
Lothar Kanz ◽  
Malcolm A.S. Moore

Abstract The aorta-gonads-mesonephros (AGM) region autonomously generates adult repopulating hematopoietic stem cells (HSC) in the mouse embryo and provides its own HSC-supportive microenvironment. Stromal cells from adult bone marrow, yolk sac, fetal liver and AGM have been used in coculture systems for analysing growth, maintenance and differentiation of hematopoietic stem cells. We generated >100 cloned stromal cell lines from the AGM of 10.5 dpc mouse embryos. In previous studies, we tested these for support of murine adult and human cord blood (CB) CD34+ cells. We could demonstrate that 25 clones were superior to the MS5 bone marrow stromal cell line in supporting progenitor cell expansion of adult mouse bone marrow both, in 2ndry CFC and CAFC production. In addition we demonstrated that 5 AGM lines promoted in absence of exogenous growth factors the expansion of human CB cells with progenitor (CFC production for at least 5 weeks) and stem cell (repopulation of cocultured cells in NOD/SCID assay) function. Now, we could show that one of the isolated stromal cell lines (AGM-S62) is capable in differentiating undifferentiated murine embryonic stem (mES) cells into cells of the hematopoietic lineage. A sequential coculture of mES-cells with AGM-S62 showed production of CD41+ hematopoietic progenitor cells at day 10 as well as 2ndry CFC and CAFC production of day 10 suspension cells. Hematopoietic cell differentiation was comparable to standard OP9 differentiation assay. With these data, we can describe for the first time, that a stromal cell line other than OP9 can induce hematopoietic differentiation of undifferentiated mES cells. Hematopoietic support occurs independently of M-CSF deficiency, which is the characteristic of OP9 cells, because it is strongly expressed by AGM-S62. To evaluate genes responsible for hematopoietic cell support, we compared a supporting and a non-supporting AGM stromal cell line by microarray analysis. The cell line with hematopoietic support clearly showed a high expression of mesenchymal markers (laminins, thrombospondin-1) as well as characteristic genes for the early vascular smooth muscle phenotype (Eda). Both phenotypes are described for stromal cells with hematopoietic support generated from bone marrow and fetal liver. In addition, the analysed supporting AGM stromal cell line interestingly expressed genes important in early B-cell differentiation (osteoprotegerin, early B-cell factor 1, B-cell stimulating factor 3), which goes in line with data demonstrating early B-cell development in the AGM-region before etablishing of fetal liver hematopoiesis. Further studies will show the significance of single factors found to be expressed in microarray analyses. This unique source of > 100 various cell lines will be of value in elucidating the molecular mechanisms regulating embryonic and adult hematopoiesis in mouse and man.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3380-3380 ◽  
Author(s):  
Noopur Raje ◽  
Shaji Kumar ◽  
Teru Hideshima ◽  
Kenji Ishitsuka ◽  
Hiroshi Yasui ◽  
...  

Abstract BAFF is a member of the tumor necrosis factor (TNF) family and is critical for the maintenance and homeostasis of normal B-cell development. Importantly, BAFF promotes the generation of rapidly dividing immunoglobulin secreting plasmablasts from activated memory B cells by enhancing their survival. Given that MM is a cancer of plasma cells and that the signaling cascades implicated in receptor ligand interactions of BAFF are crucial in MM cell biology, we hypothesized that this cytokine may play a critical role in MM cell development, survival, and proliferation. We performed gene expression profiling (GEP) on CD 138+ plasma cells isolated from 90 MM patients (45 newly diagnosed and 45 relapsed) and 11 healthy controls using the Affymetrix U133A arrays. Our data demonstrates increased expression of transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and B-cell maturation antigen (BCMA), 2 receptors used by BAFF to exert its effects. Our data also shows an increased expression of a proliferation-inducing ligand (APRIL), another member of the TNF family with homology to BAFF. Expression levels of BAFF and BAFF-R could not be determined because of lack of these probe sets on the Affymetrix U133A arrays. GEP analysis shows increased BCMA expression (p<0.0001, student T test) on newly diagnosed and relapsed MM versus normal plasma cells. Flow cytometry on MM cell lines demonstrated a differential expression of the three receptors of BAFF, with BCMA present on most cell lines but BAFF-R expressed at low levels only on LR5 cells and DOX40 MM cells. In contrast, flow cytometry performed on MM patient cells demonstrated the presence of all 3 receptors on CD 138+ cells. ELISA assays performed on 30 MM sera demonstrated a mean BAFF level of 618 pg/ml (range: 128–2126pg/ml) versus 235pg/ml (range: 158–326pg/ml) in 7 normal donor sera. Fifty six% (17/30) of MM patients had BAFF levels in excess of the highest value noted in normals. To understand the role BAFF might play in the biology of MM, we studied the effects of recombinant BAFF (rh-BAFF) on MM cells directly and in the context of its bone marrow microenvironment. (abstract # 554746) rh-BAFF conferred a survival advantage to MM cells and protected them against dexamethasone-induced cytotoxicity. Importantly, anti-apoptotic proteins Bcl2 and Mcl-1 were upregulated, as were growth and survival signals belonging to the JAK/STAT and MAPKinase pathways. Conversely, neutralizing antibody to BAFF blocked, at least in part, blocked the upregulation of anti-apoptotic proteins with associated growth and survival, confirming that these effects were due to BAFF. Importantly, all of these signals were downregulated even in the presence of bone marrow stromal cells (BMSCs). These data therefore show a role for BAFF mediating MM cell survival and provide the framework for inhibiting BAFF, either alone or in combination with dexamethasone, to improve patient outcome in MM.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2844-2844
Author(s):  
Noelia Purroy ◽  
Eva Calpe ◽  
Pau Abrisqueta ◽  
Cecilia Carpio ◽  
Carles Palacio ◽  
...  

Abstract Abstract 2844 Introduction. ZAP-70 (ξ-associated protein) is a protein tyrosine kinase of the Syk/ZAP family that plays a crucial role in cellular activation in T and NK cells. High expression of ZAP-70 protein in malignant cells from Chronic Lymphocytic Leukemia (CLL) correlates with adverse clinical prognostic features, such as unmutated IgHV genes, short time to progression, and short survival. Moreover, ZAP-70 protein has been related to aggressive features of the CLL cells, such as enhanced B-cell receptor (BCR) signaling and higher migration capacity. To further investigate into the mechanisms by which ZAP-70 protein influences the clinical outcome of patients with CLL, we analyzed the functional consequences of ZAP-70 ectopic expression in malignant B-cells. For this, Ramos and Raji (Burkitt) B-cell lines were stably transfected with a ZAP-70 expressing vector (pEGFP-N2ZAP-70). Raji transfectant showed constitutively phosphorylated ZAP-70 protein, whilst Ramos cells required stimulation with 5 μg/ml F(ab') 2 anti-IgM to get ZAP-70 activated. ZAP-70 expression induced the upregulation of the chemokine receptor CCR7, thus giving the cells the ability to better respond and migrate towards CCL21 (own data, Blood 2011 pre-published). CCR7 ligands (chemokines CCL21 and CCL19) are mainly expressed in high endothelial venules and the T zones from secondary lymphoid organs. The aims of this study were firstly to evaluate in vivo the migratory/invasive capability of pEGFP-N2ZAP-70 transfected Raji and Ramos cell lines compared to pEGFP Raji and Ramos cell lines; and later, to compare the overall survival (OS) of mice injected with pEGFP-N2ZAP-70 transfected cells to those injected with only pEGFP transfected cells. Methods. For this, a total of 27 7- to 8-week old SCID (CB17Crl) mice were used. Mice were inoculated intravenously with 5×106 cells of each cell line (6 mice with Raji-GFP, 5 mice with Raji-GFP-ZAP-70, 5 mice with Ramos-GFP and 10 mice with Ramos-GFP-ZAP-70). Mice were observed for the onset of hind legs paralysis, dyspnea, or evidence of tumor growth, once symptoms appeared, mice were euthanized and lymphoid and non-lymphoid organs were obtained for further analysis of the presence of GFP-positive cells by flow cytometry and immunohistochemistry. Results. Twenty-six out of twenty-seven injected mice were included in the analysis. The excluded mouse was found dead before it could be euthanized to obtain the organs. In the Raji xenograft model, 11/11 (100%) of mice had hind legs paralysis as the first symptom to appear. The median survival was 19 days for GFP-ZAP-70 and 16 days for GFP injected mice. There were no statistically significant differences between survival of GFP-ZAP-70 and GFP injected mice (OS was 66.7% [95% CI 38.4–100] vs 33.3% [95% CI 0–71.1], p=0.784, at 19 and 16 days, respectively). In the Ramos xenograft model, 6/15 (40%) of mice showed hind legs paralysis as the first symptom to appear, as well as evidence of abdominal tumor growth in 6/15 (40%), whereas in 3/15 (20%) the established event was dyspnea. The median survival in Ramos xenograft model was 40 days for GFP-ZAP-70 and 38 days for GFP injected mice. Again there were no statistically significant differences between survival of GFP-ZAP-70 and GFP Ramos injected mice (OS was 50% [95% CI 18.4–81.6] vs 40% [95% CI 0–83.8], p=0.180, at 40 and 38 days, respectively). By flow cytometry analysis of GFP cells we found that in the Raji xenograft model there were statistically significant differences between the migration of GFP-ZAP-70 and GFP injected cells towards bone marrow (21.5% vs 5.17, p=0.011), spleen (0.08% vs 0.01%, p=0.006) and thymus (0.00% vs 0.02%, p=0.037). The highest percentages of GFP positive cells were found in bone marrow samples (mean, 9.85%), whereas in spleen and thymus the percentages of GFP positive cells were all below 0, 1%. There was no statistically significant difference between the cellular migration in the Ramos xenograft model in any of the organs analyzed. Conclusion. In conclusion, malignant B-lymphocytes with ectopic expression of activated ZAP-70 protein show enhanced ability to migrate towards and infiltrate lymphoid organs in a xenograft model, specially the bone marrow, although it does not translate into a worse survival of the animals. Further specific immunohistochemical assays to determine infiltrated areas by ZAP-70 expressing lymphocytes are in process. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3513-3513
Author(s):  
David B. Sykes ◽  
Mark K Haynes ◽  
Nicola Tolliday ◽  
Anna Waller ◽  
Julien M Cobert ◽  
...  

Abstract Abstract 3513 AML in adults is a devastating disease with a 5-year survival rate of 25%. We lack new treatments for AML, and the chemotherapy standard of care remains unchanged in thirty years. One success story in the treatment of AML has been the discovery of drugs that trigger the differentiation of leukemic blasts in the small subset of patients with acute promyelocytic leukemia. However, differentiation therapy is unfortunately not available for the remaining 90% of non-APL acute myeloid leukemia patients. Understanding and targeting the mechanism of differentiation arrest in AML has been under investigation for more than four decades. There is growing evidence to support the role of the homeobox transcription factors in normal hematopoietic differentiation as well as malignant hematopoiesis. The persistent, and inappropriate, expression of the homeobox gene HoxA9 has been described in the majority of acute myeloid leukemias. This implicates HoxA9 dysregulation as a common pathway of differentiation arrest in myeloid leukemias and suggests that by understanding and targeting this pathway, one might be able to overcome differentiation arrest. In cultures of primary murine bone marrow, constitutive expression of HoxA9 blocks myeloid differentiation and results in the outgrowth of immature myeloid cell lines. The mechanism by which HoxA9 causes differentiation arrest is not known and no compounds exist that inhibit HoxA9. We developed a murine cell line model in which the cells were blocked in differentiation by a conditional version of HoxA9. In this system, an estrogen-dependent ER-HoxA9 protein was generated by fusion with the estrogen receptor hormone-binding domain. When expressed in cultures of primary murine bone marrow, immortalized myeloblast cell lines can grow indefinitely in the presence of stem cell factor and beta-estradiol. Upon removal of beta-estradiol, and inactivation of HoxA9, these cell lines undergo synchronous and terminal myeloid differentiation. We took advantage of an available transgenic mouse model in which GFP was expressed downstream of the lysozyme promoter, a promoter expressed only in mature neutrophils and macrophages. Cell lines derived from the bone marrow of this lysozyme-GFP mouse were GFP-negative at baseline and brightly GFP-positive upon differentiation. In this manner, we generated a cell line with a built-in reporter of differentiation. These cells formed the basis of a high-throughput screen in which cells were incubated with small molecules for a period of four days in 384-well plate format. The cells were assayed by multi-parameter flow cytometry to assess for toxicity and differentiation. Compounds that triggered green fluorescence were scored as “HITS” and their pro-differentiation effects confirmed by analysis of morphology and cell surface markers. Given the availability of cells and the simple and reliable assay, we performed both a pilot screen of small molecules at The Broad Institute as well as an extensive screen of the NIH Molecular Libraries Small Molecule Repository. The screen of more than 350,000 small molecules was carried out in collaboration with the University of New Mexico Center for Molecular Discovery. We have identified one lead class of compounds - prostacyclin agonists – capable of promoting myeloid differentiation in this cell line model of AML. Using a parallel cell line derived from a prostacyclin receptor knock-out mouse, we confirmed that activity was due to signaling through the prostacyclin receptor. The role of prostacyclin signaling in myeloid differentiation has not been previously described. Analysis of gene expression demonstrated that the expression of the prostacyclin receptor is seen in ∼60% of in primary human AML samples. This is a potentially exciting finding as prostacyclin agonists (e.g. treprostinil) are clinically relevant as well as FDA-approved. Their potential role in the treatment of acute myeloid leukemia is unknown. Here we present the details of our high-throughput flow cytometry system and preliminary identification of pro-differentiation agents in AML. If successful, we anticipate that one of these small molecules may offer insight into a mechanism for overcoming differentiation arrest, and may also translate into a novel, clinically relevant treatment for acute myeloid leukemia. Disclosures: Sklar: IntelliCyt: Founder of IntelliCyt, the company that sells the HyperCyt high-throughput flow cytometry system. Other. Zon:Fate Therapeutics: Founder Other.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2537-2537
Author(s):  
Chengcheng Fu ◽  
Hui Liu ◽  
Juan Wang ◽  
Ling Ma ◽  
Songguang Ju ◽  
...  

Abstract CD137 and its ligand are members of the Tumor Necrosis Factor (TNF) receptor and TNF superfamilies, respectively, regulate cell activation and proliferation of immune system. CD137L, in addition to its ability to costimulate T cells by triggering CD137 receptor, also signals back into antigen presenting cells inducing proliferation, prolonging survival and enhancing secretion of proinflammatory cytokines. The expression of CD137L and its function on multiple myeloma cells is unknown. We identified the constitutive expression of CD137L by flow cytometry on U266, RPMI 8226, LP1, MY5 and KMS-11 of Multiple myeloma (MM) cell lines as high as 96%, 97.5%, 89%, 93% and 94%.But, CD137 expressed on the cell surface was low as 4%, 5%, 1%, 2%, 5% respectively. Now that, CD137L was expressed very strongly on MM cell lines, next, we investigated CD137L expression of MM cells from 85 BM samples of patients seen in the hematological Dept of the First Affiliated Hosp. of Soochow University between January 2012 and June 2013 and diagnosed of active multiple MM, including the patients of newly-diagnosed (n=35), relapsed (n=5) and after 2- 4 prior therapies (n=45). The BM samples were examined using antibodies against CD45RO PE-Cy7, CD138 APC-H7, CD38 FITC and CD137L PE, according to standard protocols for surface staining. Indeed, CD137L protein was expressed by a select group of CD45-CD38++CD138+cells as higher than 95%, the same, CD38 and CD138 are expressed more than 90% of the cells of CD45-CD137L+.There were 22 samples from 11 cases collected before and after treatment and this was further evidence that CD137L molecule was consistently expressed on the MM cell surface. However, CD137L expression was not or hardly detectable on normal plasma cells confirmed by CD45+CD38++CD138+ CD56- CD19+, indicating that CD137L was ectopically expressed by MM cells and probably a specific marker of MM cells. The ectopic CD137L expression was not a mere epiphenomenon but was selected for, what function of it? We hypothesized that it would also act as a growth stimulus for B cell cancers. Then we selected U266-a MM cell line to explore the biological effect of CD137L reverse signaling and its underlying mechanism. As a result, in vitro study, U266 cells(2X105/ml))were cultured plate pre-coated with mAb 1F1 or irrelevant mouse IgG at l ug/ml in PBS and at 400 ul per well of 24-well plate or 80 ul per well of 96-well plate and washed twice after overnight incubation at 4°C. The proliferation and survival of U266 was enhanced by stimulating- CD137L mAb (1F1) than those induced by control mouse IgG by cell counting (4.2 X105/ml VS 3.3 X105/ml), WST-8(1.15 VS 0.81) and CFSE assay (930 VS 991) at incubation for 48h. In addition, the cell cycle analysis showed that CD137L induces proliferation and increases the number of cells in the S phase from 36.1% to 42.5% after 72h incubation. The percentage of apoptosis cells (Annexin V+ and PI+) was 19.6% VS 21.2% with no statistical significance. In order to explore the mechanism of the function of CD137L on MM cells, we surveyed the cytokine profiles during the incubation of U266 cells cultured for 2 days with different stimuli with mAb 1F1 compared with the control group. Intracellular cytokine staining showed that treatment of cells with 1F1 increased the production of IL-6 from 3.8% to 63.9% by Flow cytometry. When neutralizing anti-IL-6 mAb (5 ug/ml) was added to the culture medium, the cells(2X105/ml))were cultured for 48 h in pure medium or plus 10 ng/ml Fc or CD137–Fc protein and the cell proliferation measured by WST-8 was 0.79 VS 0.80 VS 0.72.1F1-induced cell proliferation was effectively inhibited. IL-6 can promote cell proliferation and survival of MM. An increase of these cytokines might explain why CD137L expression could stimulate the proliferation of U266. Finally, the U266 cells were treated with bortezomib and the growth of cells was analyzed by WST-8 assay. It demonstrated that bortezomib could inhibit the function of 1F1 and the inhibition ratio of bortezomib was 22%, 51% and 58% at 24h, 48h and 72h. MM is a B-cell malignancy characterized by the clonal expansion and accumulation of malignant plasma cells in the bone marrow. In our study, CD137L is not only a novel ectopic constitutive marker of MM, but also a promoting proliferation factor. This suggests the possibility that its expression on MM cells may be directly target for immunomodulatory therapy for MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2254-2254
Author(s):  
Brian Estrella ◽  
Yuxuan Liu ◽  
Edd C Ricker ◽  
Manuel A Pazos ◽  
Jole Fiorito ◽  
...  

Abstract A hallmark of DLBCL is epigenetic derangements characterized by monoallelic mutations in histone acetyltransferases (HATs); EP300 (p300) and CREBBP (CBP). The intact allele offers the opportunity for targeted therapies designed to overcome mutational dysregulation. We reported the discovery of YF2, a first-in-class HAT activator that demonstrates selective cytotoxicity in HAT-mutated DLBCL and induces HAT-mediated histone acetylation in vitro and in vivo. Here, we detail the mechanisms of action and the downstream effects of YF2 treatment. A unique feature of CBP/p300 is that it harbors a regulatory loop within its catalytic domain that undergoes autoacetylation which is critical for maintaining normal function. In order to determine if YF2 is able to induce the autoacetylation of p300/CBP, thereby increasing its catalytic activity, hypoacetylated CBP/p300 was combined with YF2 and Ac-CoA. YF2 demonstrated significant induction of CBP/p300 autoacetylation. To understand how YF2 interacts with HATs we analyzed the thermal stability, via thermal shift assay, of CBP/p300 subunits in the presence of YF2. We observed a T m shift when utilizing the full p300 (ΔT m = -2.9 oC)/CBP(ΔT m = -3.4 oC) catalytic core, which includes the catalytic, PHD/RING, and bromodomain. YF2 does not interact directly with the catalytic domain as there were no observed T m shift. YF2 significantly interacts with the bromodomain (ΔT m = -5.6 oC). In silico analysis has shown that the bromodomain has 3 TRP domains that are predicted to interact with small molecules. Next, we sought to determine how resistance to HDAC inhibitors (HDACi) and mutations/loss of HATs affects sensitivity to YF2. We first developed cell lines to be 10-fold resistant to HDACi romidepsin. When treated with YF2, resistant-SUDHL-6 was more sensitive to YF2 than the parental cell line (Resistant IC 50 = 2.2µM vs Parental IC 50 = 7.22µM). We found no change in YF2 sensitivity in the HAT wt OCI-Ly1 cell line. We performed CRISPR KO of EP300 in wt OCI-Ly7 cell line. A single cell clone with EP300 mutations was identified (OCI-Ly7-EP300 +/-). ICE analysis revealed that the percentage of indels was 12%. OCI-Ly7-EP300 +/- had lower p300 protein expression and were more sensitive to YF2 (IC 50 = 14.05µM) compared to wt (IC 50 = 23.7µM) when measured by Annexin V and CellTiter Glo assay. CBP/p300 is involved in the transcriptional activation of p53 through direct acetylation. YF2 induced both CBP (EC 50 = 15.47µM) and p300 (EC 50 = 6.05µM) mediated acetylation of p53 in cell free assays. As measured by RNA-Seq, YF2 altered multiple pathways regulated by CBP/p300 such as apoptosis and the p53 pathways. The p53 pathway was significantly upregulated in all cell lines. Validation of this pathway via qPCR, revealed p21, BAI1, ATM, FAS, FOS were upregulated in all cell lines. Additionally, YF2 induced G2/M arrest in a dose dependent manner when assessed via flow cytometry. We also observed modest increases in p21 and decrease CCND1 expression with YF2 treatment. BCL6, a transcriptional repressor linked to B-cell lymphomagenesis, is in part regulated through acetylation by CBP/p300. Mechanistically, CBP and the BLC6/SMRT/HDAC3 repressor complex co-occupy enhancers in the MHC Class II loci. Lack of functional CBP drives BCL6 mediated MHC repression resulting in reduced MHC gene expression and altered antigen presentation. In cell free assays, we YF2 induced p300 mediated BCL6 acetylation (IC 50 = 1.58 µM). We hypothesized HAT activation by YF2 could increase MHC expression in DLBCL. RNA-Seq analysis revealed YF2 led to upregulation of the interferon gamma pathway. Significantly, cell lines treated with YF2 showed increased MHC Class I and II expression when analyzed via flow cytometry. In summary, these findings demonstrate that YF2 interacts with the RING and bromodomains, leading to an allosteric change within the catalytic pocket to facilitate increased acetylation. In addition, YF2 leads to CBP/p300 autoacetylation, further enhancing enzymatic activity. We also demonstrated that YF2 is highly selective to DLBCL harboring HAT mutations and overcomes resistance to HDACi. Additionally, YF2 treatment modulates the p53:BCL6 axis, cell cycle progression, and antigen presentation pathway potentially restoring immune surveillance. These results support future clinical application of YF2 in HAT mutated lymphomas. Figure 1 Figure 1. Disclosures Amengual: Seagen: Consultancy; Daiichi Sankyo, Inc: Consultancy; Epizyme, Inc.: Speakers Bureau; Appia Pharmaceuticals: Research Funding.


Blood ◽  
1989 ◽  
Vol 74 (3) ◽  
pp. 959-964
Author(s):  
G Reisbach ◽  
J Sindermann ◽  
JP Kremer ◽  
L Hultner ◽  
H Wolf ◽  
...  

Human B lymphocytes activated by mitogens or infected by Epstein Barr virus (EBV) have previously been shown to release colony-stimulating activity (CSA) supporting the growth of normal human bone marrow progenitors. We established five different human EBV-B cell lines spontaneously outgrown from nonmalignant peripheral blood cells and long-term bone marrow cultures. CSA derived from all of these lines induces the growth of murine macrophage colonies, whereas virtually no human bone marrow cell progenitors were stimulated. As observed in the tumor cell line MIA PaCa-2, a 4.3-kilobase (kb) transcript was detected in all cases using a human colony-stimulating factor (CSF)-1 probe. Expression of this transcript can be further stimulated within three hours upon addition of phorbol myristate acetate (PMA). The highly purified native protein exerting macrophage colony-stimulating activity (M-CSA) exhibits a molecular size of approximately 75 to 97 Kd in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The identity of EBV-B cell derived M-CSA with human urinary CSF-1 was confirmed by a complete neutralization of macrophage CSA by an antihuman urinary CSF-1 antiserum. Normal human B lymphocytes purified from tonsils or from mononuclear blood cells also express CSF-1 upon stimulation with Staphylococcus aureus Cowan I. No CSF-1 expression, however, could be detected in normal resting B lymphocytes or in the Burkitt lymphoma cell line RAJI.


Sign in / Sign up

Export Citation Format

Share Document