scholarly journals Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1.

1995 ◽  
Vol 182 (5) ◽  
pp. 1337-1343 ◽  
Author(s):  
F Liao ◽  
H K Huynh ◽  
A Eiroa ◽  
T Greene ◽  
E Polizzi ◽  
...  

During the inflammatory response, the adhesion molecule PECAM plays a crucial role in transendothelial migration, the passage of leukocytes across endothelium. We report here an additional role for PECAM in the subsequent migration of monocytes through the subendothelial extracellular matrix. PECAM has six immunoglobulin (Ig) superfamily domains. Monoclonal antibodies whose epitopes map to domains 1 and/or 2 selectively block monocyte migration through the endothelial junction, whereas those that map to domain 6 block only the migration through the extracellular matrix, trapping the monocyte between the endothelium and its basal lamina. Therefore, transendothelial migration (diapedesis) and passage through extracellular matrix (interstitial migration) are distinct and separable phases of monocyte emigration. Furthermore, distinct and separate Ig domains of PECAM are involved in mediating these two steps.

FEBS Letters ◽  
2006 ◽  
Vol 580 (11) ◽  
pp. 2637-2645 ◽  
Author(s):  
Andrius Masedunskas ◽  
Judy A. King ◽  
Fang Tan ◽  
Ruth Cochran ◽  
Troy Stevens ◽  
...  

2018 ◽  
Vol 88 (5-6) ◽  
pp. 309-318
Author(s):  
Hae Seong Song ◽  
Jung-Eun Kwon ◽  
Hyun Jin Baek ◽  
Chang Won Kim ◽  
Hyelin Jeon ◽  
...  

Abstract. Sorghum bicolor L. Moench is widely grown all over the world for food and feed. The effects of sorghum extracts on general inflammation have been previously studied, but its anti-vascular inflammatory effects are unknown. Therefore, this study investigated the anti-vascular inflammation effects of sorghum extract (SBE) and fermented extract of sorghum (fSBE) on human aortic smooth muscle cells (HASMCs). After the cytotoxicity test of the sorghum extract, a series of experiments were conducted. The inhibition effects of SBE and fSBE on the inflammatory response and adhesion molecule expression were measured using treatment with tumor necrosis factor-α (TNF-α), a crucial promoter for the development of atherosclerotic lesions, on HASMCs. After TNF-α (10 ng/mL) treatment for 2 h, then SBE and fSBE (100 and 200 μg/mL) were applied for 12h. Western blotting analysis showed that the expression of vascular cell adhesion molecule-1 (VCAM-1) (2.4-fold) and cyclooxygenase-2 (COX-2) (6.7-fold) decreased, and heme oxygenase-1 (HO-1) (3.5-fold) increased compared to the TNF-α control when treated with 200 μg/mL fSBE (P<0.05). In addition, the fSBE significantly increased the expression of HO-1 and significantly decreased the expression of VCAM-1 and COX-2 compared to the TNF-α control in mRNA level (P<0.05). These reasons of results might be due to the increased concentrations of procyanidin B1 (about 6-fold) and C1 (about 30-fold) produced through fermentation with Aspergillus oryzae NK for 48 h, at 37 °C. Overall, the results demonstrated that fSBE enhanced the inhibition of the inflammatory response and adherent molecule expression in HASMCs.


2020 ◽  
Vol 21 (20) ◽  
pp. 7554
Author(s):  
Ciro De Luca ◽  
Assunta Virtuoso ◽  
Nicola Maggio ◽  
Sara Izzo ◽  
Michele Papa ◽  
...  

Stroke is a major challenge in modern medicine and understanding the role of the neuronal extracellular matrix (NECM) in its pathophysiology is fundamental for promoting brain repair. Currently, stroke research is focused on the neurovascular unit (NVU). Impairment of the NVU leads to neuronal loss through post-ischemic and reperfusion injuries, as well as coagulatory and inflammatory processes. The ictal core is produced in a few minutes by the high metabolic demand of the central nervous system. Uncontrolled or prolonged inflammatory response is characterized by leukocyte infiltration of the injured site that is limited by astroglial reaction. The metabolic failure reshapes the NECM through matrix metalloproteinases (MMPs) and novel deposition of structural proteins continues within months of the acute event. These maladaptive reparative processes are responsible for the neurological clinical phenotype. In this review, we aim to provide a systems biology approach to stroke pathophysiology, relating the injury to the NVU with the pervasive metabolic failure, inflammatory response and modifications of the NECM. The available data will be used to build a protein–protein interaction (PPI) map starting with 38 proteins involved in stroke pathophysiology, taking into account the timeline of damage and the co-expression scores of their RNA patterns The application of the proposed network could lead to a more accurate design of translational experiments aiming at improving both the therapy and the rehabilitation processes.


2007 ◽  
Vol 14 (5) ◽  
pp. 227-237 ◽  
Author(s):  
Alan R. Schenkel ◽  
Eric M. Dufour ◽  
Tina W. Chew ◽  
Emily Sorg ◽  
William A. Muller

1999 ◽  
Vol 112 (12) ◽  
pp. 1915-1923 ◽  
Author(s):  
P.L. Hordijk ◽  
E. Anthony ◽  
F.P. Mul ◽  
R. Rientsma ◽  
L.C. Oomen ◽  
...  

Vascular endothelial (VE)-cadherin is the endothelium-specific member of the cadherin family of homotypic cell adhesion molecules. VE-cadherin, but not the cell adhesion molecule platelet/endothelial cell adhesion molecule (PECAM-1), markedly colocalizes with actin stress fibers at cell-cell junctions between human umbilical vein endothelial cells. Inhibition of VE-cadherin-mediated, but not PECAM-1-mediated, adhesion induced reorganization of the actin cytoskeleton, loss of junctional VE-cadherin staining and loss of cell-cell adhesion. In functional assays, inhibition of VE-cadherin caused increased monolayer permeability and enhanced neutrophil transendothelial migration. In a complementary set of experiments, modulation of the actin cytoskeleton was found to strongly affect VE-cadherin distribution. Brief stimulation of the beta2-adrenergic receptor with isoproterenol induced a loss of actin stress fibers resulting in a linear, rather than ‘jagged’, VE-cadherin distribution. The concomitant, isoproterenol-induced, reduction in monolayer permeability was alleviated by a VE-cadherin-blocking antibody. Finally, cytoskeletal reorganization resulting from the inactivation of p21Rho caused a diffuse localization of VE-cadherin, which was accompanied by reduced cell-cell adhesion. Together, these data show that monolayer permeability and neutrophil transendothelial migration are modulated by VE-cadherin-mediated cell-cell adhesion, which is in turn controlled by the dynamics of the actin cytoskeleton.


Sign in / Sign up

Export Citation Format

Share Document