scholarly journals The Role of Lymphocyte Subsets in Accelerated Diabetes in Nonobese Diabetic–Rat Insulin Promoter–B7-1 (NOD-RIP-B7-1) Mice

1998 ◽  
Vol 187 (12) ◽  
pp. 1985-1993 ◽  
Author(s):  
F. Susan Wong ◽  
Irene Visintin ◽  
Li Wen ◽  
Jennifer Granata ◽  
Richard Flavell ◽  
...  

B7-1 transgene expression on the pancreatic islets in nonobese diabetic (NOD) mice leads to accelerated diabetes, with >50% of animals developing diabetes before 12 wk of age. The expression of B7-1 directly on the pancreatic β cells, which do not normally express costimulator molecules, converts the cells into effective antigen-presenting cells leading to an intensified autoimmune attack. The pancreatic islet infiltrate in diabetic mice consists of CD8 T cells, CD4 T cells, and B cells, similar to diabetic nontransgenic NOD mice. To elucidate the relative importance of each of the subsets of cells, the NOD–rat insulin promoter (RIP)-B7-1 animals were crossed with NOD.β2microglobulin −/− mice which lack major histocompatibility complex class I molecules and are deficient in peripheral CD8 T cells, NOD.CD4 −/− mice which lack T cells expressing CD4, and NOD.μMT −/− mice which lack B220-positive B cells. These experiments showed that both CD4 and CD8 T cells were necessary for the accelerated onset of diabetes, but that B cells, which are needed for diabetes to occur in normal NOD mice, are not required. It is possible that B lymphocytes play an important role in the provision of costimulation in NOD mice which is unnecessary in the NOD-RIP-B7-1 transgenic mice.

1989 ◽  
Vol 169 (5) ◽  
pp. 1669-1680 ◽  
Author(s):  
C Boitard ◽  
R Yasunami ◽  
M Dardenne ◽  
J F Bach

The nonobese diabetic (NOD) mouse has recently been introduced as a model for insulin-dependent diabetes mellitus. The role of regulatory T cells in the development of antipancreatic autoimmunity in this model remains unclear. To evaluate the presence of suppressive phenomena, we used disease transfer by spleen cells from diabetic NOD mice into preirradiated adult recipients as a model for accelerated disease. Suppressor phenomena were detected by testing the protection afforded by lymphoid cells from nondiabetic NOD mice against diabetes transfer in irradiated recipients. Transfer of diabetes was delayed by reconstituting recipients with spleen cells from nondiabetic NOD donors. The greatest protection against diabetes transfer was conferred by spleen cells from 8-wk-old nondiabetic female NOD mice. Depletion experiments showed that the protection was dependent on CD4+ cells. Protection was also detected within thymic cells from nondiabetic NOD mice and protection conferred by spleen cells was abrogated by thymectomy of nondiabetic female, but not male, NOD donors at 3 wk of age. These findings indicate that suppressive CD4+ T cells that are dependent on the presence of the thymus may delay the onset of diabetes in female diabetes-prone NOD mice.


2011 ◽  
Vol 208 (12) ◽  
pp. 2375-2383 ◽  
Author(s):  
James F. Mohan ◽  
Shirley J. Petzold ◽  
Emil R. Unanue

In nonobese diabetic (NOD) mice, two sets of autoreactive CD4+ T cells recognize the B:9–23 segment of the insulin B chain. One set, type A, recognizes insulin presented by antigen-presenting cells (APCs). These T cells are highly deleted in the thymus. The second set, type B, does not recognize insulin protein but reacts with soluble B chain peptide. This set is not deleted in the thymus but is activated in the islets of Langerhans. In this study, we examine the specificity of these two types of T cells. The protein-reactive set recognizes the stretch of residues 13–21 of the insulin B chain. The set reactive to peptide only recognizes the stretch from residues 12–20. A single amino acid shift of the B chain peptide bound to I-Ag7 determines whether T cells recognize peptides generated by the processing of insulin, and consequently their escape from thymic purging. Biochemical experiments indicate that peptides bound in the 13–21 register interact more favorably with I-Ag7 than peptides that bind in the 12–20 register. Thus, self-reactive T cells can become pathogenic in the target organ where high concentrations of antigen and/or differences in intracellular processing present peptides in registers distinct from those found in the thymus.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jean-Marie Berthelot ◽  
Frédéric Lioté ◽  
Yves Maugars ◽  
Jean Sibilia

Upon recognition of microbial DNA or self-DNA, the cyclic-GMP-AMP synthase (cGAS) of the host catalyzes the production of the cyclic dinucleotide cGAMP. cGAMP is the main activator of STING, stimulator of interferon genes, leading to interferon synthesis through the STING-TBK1-IRF3 pathway. STING is also a hub for activation of NF-κB and autophagy. The present review details the striking similarities between T and B cell responses in severe coronavirus disease 2019 (COVID-19) and both animal or human models of STING gain of function (SAVI syndromes: STING-associated vasculopathy with onset in infancy). Those similarities may be further clues for a delayed activation of STING in severe COVID-19 patients, due to DNA damages following severe acute respiratory syndrome coronaviruses (SARS-CoV-2) infection and unusual role of STING in SARS-CoV-2 control. In early stages, Th2 differentiation are noticed in both severe COVID-19 and SAVI syndromes; then, CD4+ and CD8+ T cells functional exhaustion/senescent patterns due to TCR hyper-responsiveness are observed. T cell delayed over-responses can contribute to pneumonitis and delayed cytokine secretion with over-production of IL-6. Last, STING over-activation induces progressive CD4+ and CD8+ T lymphopenia in SAVI syndromes, which parallels what is observed in severe COVID-19. ACE2, the main receptor of SARS-CoV-2, is rarely expressed in immune cells, and it has not been yet proven that some human lymphocytes could be infected by SARS-CoV-2 through CD147 or CD26. However, STING, expressed in humans T cells, might be triggered following excessive transfer of cGAMP from infected antigen presenting cells into activated CD4+ and CD8+ T cells lymphocytes. Indeed, those lymphocytes highly express the cGAMP importer SLC19A1. Whereas STING is not expressed in human B cells, B cells counts are much less affected, either in COVID-19 or SAVI syndromes. The recognition of delayed STING over-activation in severe COVID-19 patients could prompt to target STING with specific small molecules inhibitors already designed and/or aspirin, which inhibits cGAS.


2011 ◽  
Vol 208 (7) ◽  
pp. 1501-1510 ◽  
Author(s):  
Carolin Daniel ◽  
Benno Weigmann ◽  
Roderick Bronson ◽  
Harald von Boehmer

Type 1 diabetes (T1D) results from the destruction of insulin-secreting pancreatic β cells by autoreactive T cells. Insulin is an essential target of the autoimmune attack. Insulin epitopes recognized by diabetogenic T cell clones bind poorly to the class II I-Ag7 molecules of nonobese diabetic (NOD) mice, which results in weak agonistic activity of the peptide MHC complex. Here, we describe a strongly agonistic insulin mimetope that effectively converts naive T cells into Foxp3+ regulatory T cells in vivo, thereby completely preventing T1D in NOD mice. In contrast, natural insulin epitopes are ineffective. Subimmunogenic vaccination with strongly agonistic insulin mimetopes might represent a novel strategy to prevent T1D in humans at risk for the disease.


2008 ◽  
Vol 36 (3) ◽  
pp. 316-320 ◽  
Author(s):  
F. Susan Wong ◽  
L. Khai Siew ◽  
Li Wen

The autoimmune attack on pancreatic β-cells is orchestrated by a variety of cells that produce cytokines and other toxic mediators. CD8+ T-cells work together with other lymphocytes and antigen-presenting cells to mediate this damage and have been shown in animal models to be important both in the early stages of diabetes development and in the final effector stages. Recently, there has also been much interest in studying CD8+ T-cells that may play a role in human Type 1 diabetes and identifying their antigenic targets. The present paper will focus on the activation of CD8+ T-cells and their interaction with other cells of the immune system and discuss the target antigens and mechanisms of damage that the CD8+ T-cells use in the attack on the islet β-cell.


1997 ◽  
Vol 186 (10) ◽  
pp. 1663-1676 ◽  
Author(s):  
Joan Verdaguer ◽  
Dennis Schmidt ◽  
Abdelaziz Amrani ◽  
Brad Anderson ◽  
Nuzhat Averill ◽  
...  

It has been established that insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic (NOD) mice results from a CD4+ and CD8+ T cell–dependent autoimmune process directed against the pancreatic beta cells. The precise roles that beta cell–reactive CD8+ and CD4+ T cells play in the disease process, however, remain ill defined. Here we have investigated whether naive beta cell–specific CD8+ and CD4+ T cells can spontaneously accumulate in pancreatic islets, differentiate into effector cells, and destroy beta cells in the absence of other T cell specificities. This was done by introducing Kd– or I-Ag7–restricted beta cell–specific T cell receptor (TCR) transgenes that are highly diabetogenic in NOD mice (8.3- and 4.1-TCR, respectively), into recombination-activating gene (RAG)-2–deficient NOD mice, which cannot rearrange endogenous TCR genes and thus bear monoclonal TCR repertoires. We show that while RAG-2−/− 4.1-NOD mice, which only bear beta cell–specific CD4+ T cells, develop diabetes as early and as frequently as RAG-2+ 4.1-NOD mice, RAG-2−/− 8.3-NOD mice, which only bear beta cell–specific CD8+ T cells, develop diabetes less frequently and significantly later than RAG-2+ 8.3-NOD mice. The monoclonal CD8+ T cells of RAG-2−/− 8.3-NOD mice mature properly, proliferate vigorously in response to antigenic stimulation in vitro, and can differentiate into beta cell–cytotoxic T cells in vivo, but do not efficiently accumulate in islets in the absence of a CD4+ T cell–derived signal, which can be provided by splenic CD4+ T cells from nontransgenic NOD mice. These results demonstrate that naive beta cell– specific CD8+ and CD4+ T cells can trigger diabetes in the absence of other T or B cell specificities, but suggest that efficient recruitment of naive diabetogenic beta cell–reactive CD8+ T cells to islets requires the assistance of beta cell–reactive CD4+ T cells.


Blood ◽  
2011 ◽  
Vol 118 (9) ◽  
pp. 2462-2472 ◽  
Author(s):  
François-Xavier Hubert ◽  
Sarah A. Kinkel ◽  
Gayle M. Davey ◽  
Belinda Phipson ◽  
Scott N. Mueller ◽  
...  

Abstract To investigate the role of Aire in thymic selection, we examined the cellular requirements for generation of ovalbumin (OVA)–specific CD4 and CD8 T cells in mice expressing OVA under the control of the rat insulin promoter. Aire deficiency reduced the number of mature single-positive OVA-specific CD4+ or CD8+ T cells in the thymus, independent of OVA expression. Importantly, it also contributed in 2 ways to OVA-dependent negative selection depending on the T-cell type. Aire-dependent negative selection of OVA-specific CD8 T cells correlated with Aire-regulated expression of OVA. By contrast, for OVA-specific CD4 T cells, Aire affected tolerance induction by a mechanism that operated independent of the level of OVA expression, controlling access of antigen presenting cells to medullary thymic epithelial cell (mTEC)–expressed OVA. This study supports the view that one mechanism by which Aire controls thymic negative selection is by regulating the indirect presentation of mTEC-derived antigens by thymic dendritic cells. It also indicates that mTECs can mediate tolerance by direct presentation of Aire-regulated antigens to both CD4 and CD8 T cells.


2014 ◽  
Vol 17 (3) ◽  
pp. 421-426 ◽  
Author(s):  
B. Tokarz-Deptuła ◽  
P. Niedźwiedzka-Rystwej ◽  
B. Hukowska-Szematowicz ◽  
M. Adamiak ◽  
A. Trzeciak-Ryczek ◽  
...  

Abstract In Poland, rabbit is a highly valued animal, due to dietetic and flavour values of its meat, but above all, rabbits tend to be commonly used laboratory animals. The aim of the study was developing standards for counts of B-cells with CD19+ receptor, T-cells with CD5+ receptor, and their subpopulations, namely T-cells with CD4+, CD8+ and CD25+ receptor in the peripheral blood of mixed-breed Polish rabbits with addition of blood of meet breeds, including the assessment of the impact of four seasons of the year and animal sex on the values of the immunological parameters determined. The results showed that the counts of B- and T-cells and their subpopulations in peripheral blood remain within the following ranges: for CD19+ B-cells: 1.05 - 3.05%, for CD5+ T-cells: 34.00 - 43.07%, CD4+ T-cells: 23.52 - 33.23%, CD8+ T-cells: 12.55 - 17.30%, whereas for CD25+ T-cells: 0.72 - 2.81%. As it comes to the season of the year, it was observed that it principally affects the values of CD25+ T-cells, while in the case of rabbit sex, more changes were found in females.


Sign in / Sign up

Export Citation Format

Share Document