scholarly journals Human Dendritic Cells Activate Resting Natural Killer (NK) Cells and Are Recognized via the NKp30 Receptor by Activated NK Cells

2002 ◽  
Vol 195 (3) ◽  
pp. 343-351 ◽  
Author(s):  
Guido Ferlazzo ◽  
Ming L. Tsang ◽  
Lorenzo Moretta ◽  
Giovanni Melioli ◽  
Ralph M. Steinman ◽  
...  

During the innate response to many inflammatory and infectious stimuli, dendritic cells (DCs) undergo a differentiation process termed maturation. Mature DCs activate antigen-specific naive T cells. Here we show that both immature and mature DCs activate resting human natural killer (NK) cells. Within 1 wk the NK cells increase two– to fourfold in numbers, start secreting interferon (IFN)-γ, and acquire cytolytic activity against the classical NK target LCL721.221. The DC-activated NK cells then kill immature DCs efficiently, even though the latter express substantial levels of major histocompatibility complex (MHC) class I. Similar results are seen with interleukin (IL)-2–activated NK cell lines and clones, i.e., these NK cells kill and secrete IFN-γ in response to immature DCs. Mature DCs are protected from activated NK lysis, but lysis takes place if the NK inhibitory signal is blocked by a human histocompatibility leukocyte antigen (HLA)-A,B,C–specific antibody. The NK activating signal mainly involves the NKp30 natural cytotoxicity receptor, and not the NKp46 or NKp44 receptor. However, both immature and mature DCs seem to use a NKp30 independent mechanism to act as potent stimulators for resting NK cells. We suggest that DCs are able to control directly the expansion of NK cells and that the lysis of immature DCs can regulate the afferent limb of innate and adaptive immunity.

Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2252-2258 ◽  
Author(s):  
Thierry Walzer ◽  
Marc Dalod ◽  
Scott H. Robbins ◽  
Laurence Zitvogel ◽  
Eric Vivier

AbstractSeveral recent publications have focused on the newly described interactions between natural-killer (NK) cells and dendritic cells (DCs). Activated NK cells induce DC maturation either directly or in synergy with suboptimal levels of microbial signals. Immature DCs appear susceptible to autologous NK-cell-mediated cytolysis while mature DCs are protected. NK-cell-induced DC activation is dependent on both tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) secretion and a cell-cell contact involving NKp30. In vitro, interleukin-12 (IL-12)/IL-18, IL-15, and IFN-α/β production by activated DCs enhance, in turn, NK-cell IFN-γ production, proliferation, and cytotoxic potential, respectively. In vivo, NK-cell/DC interactions may occur in lymphoid organs as well as in nonlymphoid tissues, and their consequences are multiple. By inducing DC activation, NK-cell activation induced by tumor cells can indirectly promote antitumoral T-cell responses. Reciprocally, DCs activated through Toll-like receptors (TLRs) induce potent NK-cell activation in antiviral responses. Thus, DCs and NK cells are equipped with complementary sets of receptors that allow the recognition of various pathogenic agents, emphasizing the role of NK-cell/DC crosstalk in the coordination of innate and adaptive immune responses.


1996 ◽  
Vol 184 (3) ◽  
pp. 913-922 ◽  
Author(s):  
O Mandelboim ◽  
H T Reyburn ◽  
M Valés-Gómez ◽  
L Pazmany ◽  
M Colonna ◽  
...  

Recognition of major histocompatibility complex class I molecules by natural killer (NR) cells leads to inhibition of target cell lysis. Based on the capacity of different human histocompatibility leukocyte antigen (HLA)-C and HLA-B molecules to inhibit target cell lysis by NK lines and clones, three NK allospecificities have been defined: NK1 and NK2 cells are inhibited by different HLA-C allotypes and NK3 cells by some HLA-B allotypes. The NK1 and NK2 inhibitory ligands on target cells correspond to a dimorphism of HLA-C at residues 77 and 80 in the alpha 1 helix: Asn77-Lys80 in NK1 and Ser77-Asn80 in NK2 inhibitory ligands. It has been reported that protection from NK1 killers depended on the presence of the Lys residue at position 80, an upward pointing residue near the end of the alpha 1 helix (and not on Asn77), whereas inhibition of NK2 effector cells required Ser77, a residue deep in the F pocket and interacting with the peptide (and not Asn80). As part of ongoing experiments to investigate the structural requirements for NK cell inhibition by HLA-C locus alleles, we also examined the effects of mutations at residues 77 and 80 on the ability of HLA-C alleles to confer protection from NK lysis. We present data confirming that the NK1 specificity depended on Lys80 (and not on Asn77); however recognition of NK2 ligands by NK cells was also controlled by the amino acid at position 80 (Asn), and mutation of Ser77 had no effect. Furthermore, bound peptide was shown to be unnecessary for the inhibition of NK cell-mediated lysis since HLA-C molecules assembled in the absence of peptide in RMA-S cells at 26 degrees C were fully competent to inhibit NK cells specifically. The implications of these data for peptide-independent recognition of HLA-C by NK receptors are discussed.


Blood ◽  
2011 ◽  
Vol 118 (25) ◽  
pp. 6487-6498 ◽  
Author(s):  
Rosa Barreira da Silva ◽  
Claudine Graf ◽  
Christian Münz

Abstract Human mature dendritic cells (DCs) can efficiently stimulate natural killer (NK)–cell responses without being targeted by their cytotoxicity. To understand this important regulatory crosstalk, we characterized the development of the immunologic synapse between mature DCs and resting NK cells. Conjugates between these 2 innate leukocyte populations formed rapidly, persisted for prolonged time periods and matured with DC-derived f-actin polymerization at the synapse. Polarization of IL-12 and IL-12R to the synapse coincided with f-actin polymerization, while other activating and inhibitory molecules were enriched at the interface between DCs and NK cells earlier. Functional assays revealed that inhibition of f-actin polymerization in mature synapses led to an increase of IFN-γ secretion and cytotoxicity by NK cells. This elevated NK-cell reactivity resulted from decreased inhibitory signaling in the absence of MHC class I polarization at the interface, which was observed on inhibition of f-actin polymerization in DCs. Thus, inhibitory signaling is stabilized by f-actin at the synapse between mature DCs and resting NK cells.


Blood ◽  
2004 ◽  
Vol 104 (10) ◽  
pp. 3276-3284 ◽  
Author(s):  
Xia Zhang ◽  
Maria Cecilia Rodriguez-Galán ◽  
Jeff J. Subleski ◽  
John R. Ortaldo ◽  
Deborah L. Hodge ◽  
...  

Abstract Interferon-γ (IFN-γ) production and cytolytic activity are 2 major biologic functions of natural killer (NK) cells that are important for innate immunity. We demonstrate here that these functions are compromised in human NK cells treated with peroxisome proliferator-activated-γ (PPAR-γ) ligands via both PPAR-γ-dependent and -independent pathways due to variation in PPAR-γ expression. In PPAR-γ-null NK cells, 15-deoxy-Δ12,14 prostaglandin J2 (15d-PGJ2), a natural PPAR-γ ligand, reduces IFN-γ production that can be reversed by MG132 and/or chloroquine, and it inhibits cytolytic activity of NK cells through reduction of both conjugate formation and CD69 expression. In PPARγ-positive NK cells, PPAR-γ activation by 15d-PGJ2 and ciglitazone (a synthetic ligand) leads to reduction in both mRNA and protein levels of IFN-γ. Overexpression of PPAR-γ in PPAR-γ-null NK cells reduces IFN-γ gene expression. However, PPAR-γ expression and activation has no effect on NK cell cytolytic activity. In addition, 15d-PGJ2 but not ciglitazone reduces expression of CD69 in human NK cells, whereas CD44 expression is not affected. These results reveal novel pathways regulating NK cell biologic functions and provide a basis for the design of therapeutic agents that can regulate the function of NK cells within the innate immune response. (Blood. 2004;104:3276-3284)


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3098-3098
Author(s):  
Arghya Ray ◽  
Yan Song ◽  
Ting DU ◽  
Dharminder Chauhan ◽  
Kenneth C. Anderson

Introduction Although proteasome inhibitor (PI) based combination therapies achieve remarkable responses multiple myeloma (MM), emergence of PI resistance is common. The mechanism(s) of PI-resistance include tumor-intrinsic factors such as mutations of the 20S proteasomal subunits, and/or tumor-extrinsic cellular components in the BM microenvironment. Interactions of BM accessory cells, immune effector cells, and tumor cells confer both drug-resistance and immune suppression in MM. For example, we showed that interactions of MM plasmacytoid dendritic cells (pDCs) with MM cells and with T/NK cells both confer immune suppression via immune checkpoints, as well as trigger MM cell growth by inducing secretion of MM cell growth factors. We recently reported that targeting proteasome-associated ubiquitin receptor Rpn13 triggers cytotoxicity and overcomes tumor-intrinsic PI-resistance in MM (Song et al, Leukemia 2016;30:1877). Here we utilized our co-culture models of patient pDCs, T cells, NK cells, and autologous MM cells to characterize the immune sequelae of Rpn13 inhibition. Methods Analysis of pDCs activation Purified patient-pDCs (n =7) were treated with Rpn13 inhibitor RA190 (0.05 µM) for 24h, followed by multicolor staining using fluorophore-conjugated Abs against pDC activation/maturation markers CD80, CD83, and CD86. Transient transfections Purified MM patient pDCs were transfected with Rpn13-siRNA using TransIT-X2 transfection Kit,and analyzed for alterations in maturation markers. CTL/NK activity assays Purified MM-BM CD8+ T- or NK-cells (n = 8) were co-cultured with autologous BM-pDCs (pDC:T/NK; 1:10 ratio) for 3 days, in the presence or absence of Rpn13 inhibitor RA190 (100 nM). After washing, cells were cultured for 24h with autologous MM cells pre-stained with CellTracker/CellTrace Violet (10 T/NK:1 MM), followed by 7-AAD staining and quantification of CTL-or NK cell-mediated MM cell lysis by FACS. Results 1) RA190 triggers significant upregulation of maturation markers CD80, CD83, and CD86 on MM-pDCs (fold change vs untreated: CD80: 1.2; p = 0.007; CD83: 2.15; p = 0.006; CD86: 1.4; p = 0.003). In contrast, bortezomib-treated pDCs showed no significant upregulation of these markers. 2) Similar to pharmacological inhibition of Rpn13 with RA190, Rpn13-siRNA increased CD80 (1.76-fold), CD83 (3.12-fold), and CD86 (2.28-fold) expression on MM pDCs (p<0.01). Of note, both RA190 and bortezomib block protein degradation via proteasome, but only RA190 activates pDCs. 3) RA190 treatment increases pDC-induced MM-specific CD8+ CTL activity, as well as NK cell-mediated cytolytic activity against autologous tumor cells, evidenced by decreased viable patient MM cells. 4) Treatment of MM-pDCs with RA190 increases expression of calnexin, a molecular chaperone protein of endoplasmic reticulum which regulates immune co-stimulatory molecules, immune-regulatory signaling, and restores the ability of pDCs to induce proliferation of MM-specific CTLs or NK cells. These findings were also confirmed using pDC cell line CAL-1. Conclusions Our prior findings showed that inhibition of UbR Rpn13 overcomes intrinsic PI-resistance in MM cells. Here we show that targeting Rpn13 also triggers anti-MM immune responses. Rpn13 blockade therefore represents a novel therapeutic approach to overcome both PI-resistance and immune suppression in MM. Disclosures Chauhan: C4 Therapeutics.: Equity Ownership; Stemline Therapeutics: Consultancy. Anderson:Takeda: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; Janssen: Consultancy, Speakers Bureau; Bristol-Myers Squibb: Other: Scientific Founder; Oncopep: Other: Scientific Founder; Amgen: Consultancy, Speakers Bureau; Sanofi-Aventis: Other: Advisory Board.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Vivian Vasconcelos Costa ◽  
Weijian Ye ◽  
Qingfeng Chen ◽  
Mauro Martins Teixeira ◽  
Peter Preiser ◽  
...  

ABSTRACT Natural killer (NK) cells play a protective role against dengue virus (DENV) infection, but the cellular and molecular mechanisms are not fully understood. Using an optimized humanized mouse model, we show that human NK cells, through the secretion of gamma interferon (IFN-γ), are critical in the early defense against DENV infection. Depletion of NK cells or neutralization of IFN-γ leads to increased viremia and more severe thrombocytopenia and liver damage in humanized mice. In vitro studies using autologous human NK cells show that DENV-infected monocyte-derived dendritic cells (MDDCs), but not monocytes, activate NK cells in a contact-dependent manner, resulting in upregulation of CD69 and CD25 and secretion of IFN-γ. Blocking adhesion molecules (LFA-1, DNAM-1, CD2, and 2β4) on NK cells abolishes NK cell activation, IFN-γ secretion, and the control of DENV replication. NK cells activated by infected MDDCs also inhibit DENV infection in monocytes. These findings show the essential role of human NK cells in protection against acute DENV infection in vivo, identify adhesion molecules and dendritic cells required for NK cell activation, and delineate the sequence of events for NK cell activation and protection against DENV infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control virus infection. These results show a critical role of human NK cells in controlling DENV infection in vivo and reveal the sequence of molecular and cellular events that activate NK cells to control dengue virus infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control virus infection. These results show a critical role of human NK cells in controlling DENV infection in vivo and reveal the sequence of molecular and cellular events that activate NK cells to control dengue virus infection.


2020 ◽  
Vol 55 (5) ◽  
pp. 1802422
Author(s):  
Justine Devulder ◽  
Cécile Chenivesse ◽  
Valérie Ledroit ◽  
Stéphanie Fry ◽  
Pierre-Emmanuel Lobert ◽  
...  

Rhinovirus infections are the main cause of asthma exacerbations. As natural killer (NK) cells are important actors of the antiviral innate response, we aimed at evaluating the functions of NK cells from severe asthma patients in response to rhinovirus-like molecules or rhinoviruses.Peripheral blood mononuclear cells from patients with severe asthma and healthy donors were stimulated with pathogen-like molecules or with the rhinoviruses (RV)-A9 and RV-2. NK cell activation, degranulation and interferon (IFN)-γ expression were analysed.NK cells from severe asthma patients were less cytotoxic than those from healthy donors in response to toll-like receptor (TLR)3, TLR7/8 or RV-A9 but not in response to RV-2 stimulation. Furthermore, when cultured with interleukin (IL)-12+IL-15, cytokines which are produced during viral infections, NK cells from patients with severe asthma were less cytotoxic and expressed less IFN-γ than NK cells from healthy donors. NK cells from severe asthmatics exhibited an exhausted phenotype, with an increased expression of the checkpoint molecule Tim-3.Together, our findings indicate that the activation of NK cells from patients with severe asthma may be insufficient during some but not all respiratory infections. The exhausted phenotype may participate in NK cell impairment and aggravation of viral-induced asthma exacerbation in these patients.


Blood ◽  
2012 ◽  
Vol 119 (24) ◽  
pp. 5758-5768 ◽  
Author(s):  
Saar Gill ◽  
Adrianne E. Vasey ◽  
Alysha De Souza ◽  
Jeanette Baker ◽  
Aaron T. Smith ◽  
...  

Abstract Natural killer (NK) cells are potent anti-viral and antitumor “first responders” endowed with natural cytotoxicity and cytokine production capabilities. To date, attempts to translate these promising biologic functions through the adoptive transfer of NK cells for the treatment of cancer have been of limited benefit. Here we trace the fate of adoptively transferred murine NK cells and make the surprising observation that NK cells traffic to tumor sites yet fail to control tumor growth or improve survival. This dysfunction is related to a rapid down-regulation of activating receptor expression and loss of important effector functions. Loss of interferon (IFN)γ production occurs early after transfer, whereas loss of cytotoxicity progresses with homeostatic proliferation and tumor exposure. The dysfunctional phenotype is accompanied by down-regulation of the transcription factors Eomesodermin and T-bet, and can be partially reversed by the forced overexpression of Eomesodermin. These results provide the first demonstration of NK-cell exhaustion and suggest that the NK-cell first-response capability is intrinsically limited. Further, novel approaches may be required to circumvent the described dysfunctional phenotype.


2010 ◽  
Vol 207 (10) ◽  
pp. 2065-2072 ◽  
Author(s):  
Nathalie T. Joncker ◽  
Nataliya Shifrin ◽  
Frédéric Delebecque ◽  
David H. Raulet

Some mature natural killer (NK) cells cannot be inhibited by major histocompatibility complex (MHC) I molecules, either because they lack corresponding inhibitory receptors or because the host lacks the corresponding MHC I ligands for the receptors. Such NK cells nevertheless remain self-tolerant and exhibit a generalized hyporesponsiveness to stimulation through activating receptors. To address whether NK cell responsiveness is set only during the NK cell differentiation process, we transferred mature NK cells from wild-type (WT) to MHC I–deficient hosts or vice versa. Remarkably, mature responsive NK cells from WT mice became hyporesponsive after transfer to MHC I–deficient mice, whereas mature hyporesponsive NK cells from MHC I–deficient mice became responsive after transfer to WT mice. Altered responsiveness was evident among mature NK cells that had not divided in the recipient animals, indicating that the cells were mature before transfer and that alterations in activity did not require cell division. Furthermore, the percentages of NK cells expressing KLRG1, CD11b, CD27, and Ly49 receptors specific for H-2b were not markedly altered after transfer. Thus, the functional activity of mature NK cells can be reset when the cells are exposed to a changed MHC environment. These findings have important implications for how NK cell functions may be curtailed or enhanced in the context of disease.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2417 ◽  
Author(s):  
Tram N. Dao ◽  
Sagar Utturkar ◽  
Nadia Atallah Lanman ◽  
Sandro Matosevic

Among natural killer (NK) cell receptors, the T-cell immunoglobulin and mucin-containing domain (TIM-3) has been associated with both inhibitory and activating functions, depending on context and activation pathway. Ex vivo and in vitro, expression of TIM-3 is inducible and depends on activation stimulus. Here, we report that TIM-3 expression can be downregulated on NK cells under specific conditions. When NK cells are exposed to cancer targets, they synergize with stimulation conditions to induce a substantial decrease in TIM-3 expression on their surface. We found that such downregulation occurs following prior NK activation. Downregulated TIM-3 expression correlated to lower cytotoxicity and lower interferon gamma (IFN-γ) expression, fueling the notion that TIM-3 might function as a benchmark for human NK cell dysfunction.


Sign in / Sign up

Export Citation Format

Share Document