scholarly journals Cytosolic Phospholipase A2α–deficient Mice Are Resistant to Collagen-induced Arthritis

2003 ◽  
Vol 197 (10) ◽  
pp. 1297-1302 ◽  
Author(s):  
Martin Hegen ◽  
Linhong Sun ◽  
Naonori Uozumi ◽  
Kazuhiko Kume ◽  
Mary E. Goad ◽  
...  

Pathogenic mechanisms relevant to rheumatoid arthritis occur in the mouse model of collagen-induced arthritis (CIA). Cytosolic phospholipase A2α (cPLA2α) releases arachidonic acid from cell membranes to initiate the production of prostaglandins and leukotrienes. These inflammatory mediators have been implicated in the development of CIA. To test the hypothesis that cPLA2α plays a key role in the development of CIA, we backcrossed cPLA2α-deficient mice on the DBA/1LacJ background that is susceptible to CIA. The disease severity scores and the incidence of disease were markedly reduced in cPLA2α-deficient mice compared with wild-type littermates. At completion of the study, >90% of the wild-type mice had developed disease whereas none of the cPLA2α-deficient mice had more than one digit inflamed. Furthermore, visual disease scores correlated with severity of disease determined histologically. Pannus formation, articular fibrillation, and ankylosis were all dramatically reduced in the cPLA2α-deficient mice. Although the disease scores differed significantly between cPLA2α mutant and wild-type mice, anti-collagen antibody levels were similar in the wild-type mice and mutant littermates. These data demonstrate the critical role of cPLA2α in the pathogenesis of CIA.

1997 ◽  
Vol 185 (6) ◽  
pp. 1123-1130 ◽  
Author(s):  
Richard J. Griffiths ◽  
MaryAlice Smith ◽  
Marsha L. Roach ◽  
Jeffrey L. Stock ◽  
Ethan J. Stam ◽  
...  

Collagen-induced arthritis in the DBA/1 mouse is an experimental model of human rheumatoid arthritis. To examine the role of leukotrienes in the pathogenesis of this disease, we have developed embryonic stem (ES) cells from this mouse strain. Here, we report that DBA/1 mice made deficient in 5-lipoxygenase-activating protein (FLAP) by gene targeting in ES cells develop and grow normally. Zymosan-stimulated leukotriene production in the peritoneal cavity of these mice is undetectable, whereas they produce substantial amounts of prostaglandins. The inflammatory response to zymosan is reduced in FLAP-deficient mice. The severity of collagen-induced arthritis in the FLAP-deficient mice was substantially reduced when compared with wild-type or heterozygous animals. This was not due to an immunosuppressive effect, because anti-collagen antibody levels were similar in wild-type and FLAP-deficient mice. These data demonstrate that leukotrienes play an essential role in both the acute and chronic inflammatory response in mice.


2005 ◽  
Vol 73 (3) ◽  
pp. 1820-1827 ◽  
Author(s):  
David J. McGee ◽  
Melanie L. Langford ◽  
Emily L. Watson ◽  
J. Elliot Carter ◽  
Yu-Ting Chen ◽  
...  

ABSTRACT Helicobacter pylori causes disease in the human stomach and in mouse and gerbil stomach models. Previous results have shown that motility is critical for H. pylori to colonize mice, gerbils, and other animal models. The role of chemotaxis, however, in colonization and disease is less well understood. Two genes in the H. pylori chemotaxis pathway, cheY and tlpB, which encode the chemotaxis response regulator and a methyl-accepting chemoreceptor, respectively, were disrupted. The cheY mutation was complemented with a wild-type copy of cheY inserted into the chromosomal rdxA gene. The cheY mutant lost chemotaxis but retained motility, while all other strains were motile and chemotactic in vitro. These strains were inoculated into gerbils either alone or in combination with the wild-type strain, and colonization and inflammation were assessed. While the cheY mutant completely failed to colonize gerbil stomachs, the tlpB mutant colonized at levels similar to those of the wild type. With the tlpB mutant, there was a substantial decrease in inflammation in the gerbil stomach compared to that with the wild type. Furthermore, there were differences in the numbers of each immune cell in the tlpB-mutant-infected stomach: the ratio of lymphocytes to neutrophils was about 8 to 1 in the wild type but only about 1 to 1 in the mutant. These results suggest that the TlpB chemoreceptor plays an important role in the inflammatory response while the CheY chemotaxis regulator plays a critical role in initial colonization. Chemotaxis mutants may provide new insights into the steps involved in H. pylori pathogenesis.


2008 ◽  
Vol 82 (13) ◽  
pp. 6610-6617 ◽  
Author(s):  
Karen A. Chachu ◽  
David W. Strong ◽  
Anna D. LoBue ◽  
Christiane E. Wobus ◽  
Ralph S. Baric ◽  
...  

ABSTRACT Human noroviruses cause more than 90% of epidemic nonbacterial gastroenteritis. However, the role of B cells and antibody in the immune response to noroviruses is unclear. Previous studies have demonstrated that human norovirus specific antibody levels increase upon infection, but they may not be protective against infection. In this report, we used murine norovirus (MNV), an enteric norovirus, as a model to determine the importance of norovirus specific B cells and immune antibody in clearance of norovirus infection. We show here that mice genetically deficient in B cells failed to clear primary MNV infection as effectively as wild-type mice. In addition, adoptively transferred immune splenocytes derived from B-cell-deficient mice or antibody production-deficient mice were unable to efficiently clear persistent MNV infection in RAG1−/− mice. Further, adoptive transfer of either polyclonal anti-MNV serum or neutralizing anti-MNV monoclonal antibodies was sufficient to reduce the level of MNV infection both systemically and in the intestine. Together, these data demonstrate that antibody plays an important role in the clearance of MNV and that immunoglobulin G anti-norovirus antibody can play an important role in clearing mucosal infection.


2003 ◽  
Vol 197 (10) ◽  
pp. 1303-1310 ◽  
Author(s):  
Chisato Miyaura ◽  
Masaki Inada ◽  
Chiho Matsumoto ◽  
Tomoyasu Ohshiba ◽  
Naonori Uozumi ◽  
...  

Prostaglandin E (PGE)2 produced by osteoblasts acts as a potent stimulator of bone resorption. Inflammatory bone loss is accompanied by osteoclast formation induced by bone-resorbing cytokines, but the mechanism of PGE2 production and bone resorption in vivo is not fully understood. Using cytosolic phospholipase A2α (cPLA2α)-null mice, we examined the role of cPLA2α in PGE2 synthesis and bone resorption. In bone marrow cultures, interleukin (IL)-1 markedly stimulated PGE2 production and osteoclast formation in wild-type mice, but not in cPLA2α-null mice. Osteoblastic bone marrow stromal cells induced the expression of cyclooxygenase (COX)-2 and membrane-bound PGE2 synthase (mPGES) in response to IL-1 and lipopolysaccharide (LPS) to produce PGE2. Osteoblastic stromal cells collected from cPLA2α-null mice also induced the expression of COX-2 and mPGES by IL-1 and LPS, but could not produce PGE2 due to the lack of arachidonic acid release. LPS administration to wild-type mice reduced femoral bone mineral density by increased bone resorption. In cPLA2α-null mice, however, LPS-induced bone loss could not be observed at all. Here, we show that cPLA2α plays a key role in PGE production by osteoblasts and in osteoclastic bone resorption, and suggest a new approach to inflammatory bone disease by inhibiting cPLA2α.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2102-2102
Author(s):  
Georgette L. Suidan ◽  
Simon F. De Meyer ◽  
Alexander Brill ◽  
Stephen M. Cifuni ◽  
Denisa D. Wagner

Abstract Abstract 2102 Aberrant blood brain barrier (BBB) permeability is a hallmark pathology in many diseases of the central nervous system (CNS) including hypoxia, epilepsy, multiple sclerosis and ischemic stroke. Generalized hypoxia is a pathological condition in which the body as a whole is deprived of adequate oxygen supply. Hypoxia occurs in healthy people when they ascend to high altitudes, where it can cause altitude sickness, often manifested by headache, leading to potentially fatal complications such as high altitude cerebral edema (HACE). Hypoxia followed by reoxygenation (H/R) is also commonly used as a model to investigate pathology associated with ischemia/reperfusion as the latter condition is present in several disease states including stroke. In animal models, H/R has been shown to cause tight junction protein abnormalities, increased BBB paracellular permeability and edema. von Willebrand Factor (VWF) is a glycoprotein that is synthesized exclusively by endothelial cells and megakaryocytes. Endothelial cell-derived VWF is secreted constitutively and stored in Weibel-Palade bodies (WPB) from where it is released by regulated secretion into the plasma and subendothelium in response to endothelial activation. It has been demonstrated in vitro that exposure of cultured endothelial cells to hypoxia results in WPB exocytosis and VWF secretion. While it is known that VWF is expressed abundantly by cerebral endothelial cells, very little is known about the role of VWF in endothelial biology, particularly, in regulation of the BBB under stressful conditions. Several studies have shown that VWF protein is up regulated in plasma of patients with several neurological conditions involving BBB disruption such as stroke, severe head injury, cerebral malaria and cerebral venous sinus thrombosis. As it is known that C57BL/6 (wild-type) mice have increased BBB permeability induced by H/R, we investigated the status of BBB integrity in VWF-deficient mice (also on the C57BL/6 background). For these experiments, we used a mouse model of normobaric hypoxia (24 hours of 6% oxygen) followed by reoxygenation (1 hour ~21% oxygen). VWF antigen levels were measured by ELISA and BBB permeability was assessed by quantification of Evan's blue dye leakage into the brain. Our data indicate that plasma VWF levels in wild-type mice are significantly increased after hypoxia when compared to normoxic controls. Upon comparison with wild-type mice, we have determined that VWF-deficient mice have significantly less BBB permeability after H/R suggesting that VWF plays a role in BBB integrity under stressful conditions. We have previously reported that VWF-deficient mice have a defect in regulated P-selectin secretion (Denis et al., PNAS, 2001). To determine if the maintenance of BBB integrity found in VWF-deficient mice was due to lack of P-selectin we utilized an aptamer which inhibits P-selectin (Archemix). Inhibition of P-selectin in wild-type animals resulted in similar BBB permeability when compared to controls. Our findings suggest a critical role for VWF in BBB permeability after hypoxia/reoxygenation that is independent of P-selectin. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 291 (5) ◽  
pp. G803-G811 ◽  
Author(s):  
W. I. Khan ◽  
Y. Motomura ◽  
H. Wang ◽  
R. T. El-Sharkawy ◽  
E. F. Verdu ◽  
...  

Mucosal changes in inflammatory bowel disease (IBD) are characterized by ulcerative lesions accompanied by a prominent infiltrate of inflammatory cells including lymphocytes, macrophages, and neutrophils and alterations in 5-hydroxytryptamine (5-HT)-producing enterochromaffin (EC) cells. Mechanisms involved in recruiting and activating these cells are thought to involve a complex interplay of inflammatory mediators. Studies in clinical and experimental IBD have shown the upregulation of various chemokines including monocyte chemottractant protein (MCP)-1 in mucosal tissues. However, precise information on the roles of this chemokine or the mechanisms by which it takes part in the pathogenesis of IBD are not clear. In this study, we investigated the role of MCP-1 in the development of hapten-induced experimental colitis in mice deficient in MCP-1. Our results showed a significant reduction in the severity of colitis both macroscopically and histologically along with a decrease in mortality in MCP-1-deficient mice compared with wild-type control mice. This was correlated with a downregulation of myeloperoxidase activity, IL-1β, IL-12p40, and IFN-γ production, and infiltration of CD3+ T cells and macrophages in the colonic mucosa. In addition, we observed significantly lower numbers of 5-HT-expressing EC cells in the colon of MCP-1-deficient mice compared with those in wild-type mice after dinitrobenzenesulfonic acid. These results provide evidence for a critical role of MCP-1 in the development of colonic inflammation in this model in the context of immune and enteric endocrine cells.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ye Tao ◽  
Fang Wang ◽  
Zhaohui Xu ◽  
Xianfu Lu ◽  
Yanqing Yang ◽  
...  

AbstractWallerian degeneration (WD) involves the recruitment of macrophages for debris clearance and nerve regeneration, and the cause of the foamy macrophages that are frequently observed in peripheral transection injuries is unknown. Recent studies indicated that these foamy cells are generated by gasdermin D (GSDMD) via membrane perforation. However, whether these foamy cells are pyroptotic macrophages and whether their cell death elicits immunogenicity in peripheral nerve regeneration (PNR) remain unknown. Therefore, we used GSDMD-deficient mice and mice with deficiencies in other canonical inflammasomes to establish a C57BL/6 J mouse model of sciatic nerve transection and microanastomosis (SNTM) and evaluate the role of GSDMD-executed pyroptosis in PNR. In our study, the GSDMD−/− mice with SNTM showed a significantly diminished number of foamy cells, better axon regeneration, and a favorable functional recovery, whereas irregular axons or gaps in the fibers were found in the wild-type (WT) mice with SNTM. Furthermore, GSDMD activation in the SNTM model was dependent on the NLRP3 inflammasome and caspase-1 activation, and GSDMD-executed pyroptosis resulted in a proinflammatory environment that polarized monocytes/macrophages toward the M1 (detrimental) but not the M2 (beneficial) phenotype. In contrast, depletion of GSDMD reversed the proinflammatory microenvironment and facilitated M2 polarization. Our results suggested that inhibition of GSDMD may be a potential treatment option to promote PNR.


2021 ◽  
Vol 12 ◽  
Author(s):  
Madhu Shankar ◽  
Nathalie Uwamahoro ◽  
Emelie Backman ◽  
Sandra Holmberg ◽  
Maria Joanna Niemiec ◽  
...  

Intra-abdominal infection (peritonitis) is a leading cause of severe disease in surgical intensive care units, as over 70% of patients diagnosed with peritonitis develop septic shock. A critical role of the immune system is to return to homeostasis after combating infection. S100A8/A9 (calprotectin) is an antimicrobial and pro-inflammatory protein complex used as a biomarker for diagnosis of numerous inflammatory disorders. Here we describe the role of S100A8/A9 in inflammatory collateral tissue damage (ICTD). Using a mouse model of disseminated intra-abdominal candidiasis (IAC) in wild-type and S100A8/A9-deficient mice in the presence or absence of S100A9 inhibitor paquinimod, the role of S100A8/A9 during ICTD and fungal clearance were investigated. S100A8/A9-deficient mice developed less ICTD than wild-type mice. Restoration of S100A8/A9 in knockout mice by injection of recombinant protein resulted in increased ICTD and fungal clearance comparable to wild-type levels. Treatment with paquinimod abolished ICTD and S100A9-deficient mice showed increased survival compared to wild-type littermates. The data indicates that S100A8/A9 controls ICTD levels and antimicrobial activity during IAC and that targeting of S100A8/A9 could serve as promising adjunct therapy against this challenging disease.


2012 ◽  
Vol 302 (7) ◽  
pp. H1387-H1393 ◽  
Author(s):  
Katrina Go Yamazaki ◽  
Sang-Hyun Ihm ◽  
Robert L. Thomas ◽  
David Roth ◽  
Francisco Villarreal

Poorly synchronized activation of the ventricles can lead to impairment of normal cardiac structure/function. We reported previously that short term (4 h) left ventricular (LV) pacing-induced ventricular dyskinesis led to an inflammatory response localized to the epicardium. Results from this study demonstrated that neutrophils may play a major role in this inflammatory process. Neutrophil recruitment to a site of injury is a process that is highly dependent on an upregulation of cell adhesion molecules (CAM). The dependence of ventricular dysynchrony-induced inflammatory responses on CAM upregulation has not been explored. To gain further insight, we used a mouse model of LV pacing to evaluate the role of CAM in mediating the inflammatory response associated with ventricular dyskinesis. We first examined the effects of LV pacing in wild-type mice. Results demonstrate that 40 min of LV pacing increases ICAM-1 immunostaining as well as myeloperoxidase activity and tissue oxidative stress by twofold in early-activated myocardium. Matrix metalloproteinase-9 activity also increased in the same region by ∼3.5-fold. To determine the role of CAM, mice null for ICAM-1 or p-selectin were subjected to 40 min LV pacing. Results demonstrate that the inflammatory response seen in the wild-type mice was significantly mitigated in the ICAM-1 and p-selectin null mice. In conclusion, results demonstrate that CAM expression plays a critical role in the triggering of LV pacing-induced inflammation, thus providing evidence of a vascular mechanism underlying this response. The mechanisms that trigger an upregulation of myocardial CAM expression and, therefore, inflammation await further investigation since they suggest a specific involvement of vascular events.


Sign in / Sign up

Export Citation Format

Share Document