scholarly journals Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues

2005 ◽  
Vol 201 (2) ◽  
pp. 303-316 ◽  
Author(s):  
J. Rodrigo Mora ◽  
Guiying Cheng ◽  
Dominic Picarella ◽  
Michael Briskin ◽  
Natasha Buchanan ◽  
...  

T cell activation by intestinal dendritic cells (DC) induces gut-tropism. We show that, reciprocally, DC from peripheral lymph nodes (PLN-DC) induce homing receptors promoting CD8 T cell accumulation in inflamed skin, particularly ligands for P- and E-selectin. Differential imprinting of tissue-tropism was independent of Th1/Th2 cytokines and not restricted to particular DC subsets. Fixed PLN-DC retained the capacity to induce selectin ligands on T cells, which was suppressed by addition of live intestinal DC. By contrast, fixed intestinal DC failed to promote gut-tropism and instead induced skin-homing receptors. Moreover, the induction of selectin ligands driven by antigen-pulsed PLN-DC could be suppressed “in trans” by adding live intestinal DC, but PLN-DC did not suppress gut-homing receptors induced by intestinal DC. Reactivation of tissue-committed memory cells modified their tissue-tropism according to the last activating DC's origin. Thus, CD8 T cells activated by DC acquire selectin ligands by default unless they encounter fixation-sensitive signal(s) for gut-tropism from intestinal DC. Memory T cells remain responsive to these signals, allowing for dynamic migratory reprogramming by skin- and gut-associated DC.

Blood ◽  
2013 ◽  
Vol 121 (26) ◽  
pp. 5184-5191 ◽  
Author(s):  
Catherine E. Terrell ◽  
Michael B. Jordan

Key PointsDefects in perforin and related genes lead to abnormal T-cell activation and are associated with HLH. The physiological mechanism by which perforin protects from HLH involves CD8+ T-cell elimination of rare antigen-presenting dendritic cells.


2021 ◽  
Author(s):  
Florian Bach ◽  
Diana Munoz Sandoval ◽  
Michalina Mazurczyk ◽  
Yrene Themistocleous ◽  
Thomas A Rawlinson ◽  
...  

Plasmodium vivax offers unique challenges for malaria control and may prove a more difficult species to eradicate than Plasmodium falciparum. Yet compared to P. falciparum we know very little about the innate and adaptive immune responses that need to be harnessed to reduce disease and transmission. In this study, we inoculated human volunteers with a clonal field isolate of P. vivax and used systems immunology tools to track their response through infection and convalescence. Our data reveal Plasmodium vivax triggers an acute phase response that shares remarkable overlap with that of P. falciparum, suggesting a hardwired innate response that does not differentiate between parasite species. This leads to the global recruitment of innate-like and adaptive T cells into lymphoid tissues where up to one quarter of the T cell compartment is activated. Heterogeneous effector memory-like CD4+ T cells dominate this response and their activation coincides with collateral tissue damage. Remarkably, comparative transcriptional analyses show that P. falciparum drives even higher levels of T cell activation; diverging T cell responses may therefore explain why falciparum malaria more frequently causes severe disease.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Song Chen ◽  
Ran Ding ◽  
Yan Zhou ◽  
Xian Zhang ◽  
Rui Zhu ◽  
...  

YCP, as a kind of natural polysaccharides from the mycelium of marine filamentous fungusPhoma herbarumYS4108, has great antitumor potentialviaenhancement of host immune response, but little is known about the molecular mechanisms. In the present study, we mainly focused on the effects and mechanisms of YCP on the specific immunity mediated by dendritic cells (DCs) and T cells. T cell /DC activation-related factors including interferon- (IFN-)γ, interleukin-12 (IL-12), and IL-4 were examined with ELISA. Receptor knock-out mice and fluorescence-activated cell sorting are used to analyze the YCP-binding receptor of T cells and DCs. RT-PCR is utilized to measure MAGE-A3 for analyzing the tumor-specific killing effect. In our study, we demonstrated YCP can provide the second signal for T cell activation, proliferation, and IFN-γproduction through binding to toll-like receptor- (TLR-) 2 and TLR-4. YCP could effectively promote IL-12 secretion and expression of markers (CD80, CD86, and MHC II)viaTLR-4 on DCs. Antigen-specific immunity against mouse melanoma cells was strengthened through the activation of T cells and the enhancement of capacity of DCs by YCP. The data supported that YCP can exhibit specific immunomodulatory capacity mediated by T cells and DCs.


2021 ◽  
Vol 478 (22) ◽  
pp. 3999-4004
Author(s):  
Lawrence P. Kane

Tim-3 is a transmembrane protein that is highly expressed on subsets of chronically stimulated CD4+ helper and CD8+ cytotoxic T cells, with more transient expression during acute activation and infection. Tim-3 is also constitutively expressed by multiple types of myeloid cells. Like other TIM family members, Tim-3 can bind to phosphatidylserine displayed by apoptotic cells, and this interaction has been shown to mediate uptake of such cells by dendritic cells and cross-presentation of antigens to CD8+ T cells. In contrast, how the recognition of PS by Tim-3 might regulate the function of Tim-3+ T cells is not known. In their recent paper, Lemmon and colleagues demonstrate for the first time that recognition of PS by Tim-3 leads to enhanced T cell activation.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14565-e14565
Author(s):  
Amit Adhikari ◽  
Juliete Macauley ◽  
Yoshimi Johnson ◽  
Mike Connolly ◽  
Tim Coleman ◽  
...  

e14565 Background: Glioblastoma (GBM) is an aggressive form of brain cancer with a median survival of 15 months which has remained unchanged despite technological advances in the standard of care. GBM cells specifically express human cytomegalovirus (HCMV) proteins providing a unique opportunity for targeted therapy. Methods: We utilized our UNITE (UNiversal Intracellular Targeted Expression) platform to develop a multi-antigen DNA vaccine (ITI-1001) that codes for the HCMV proteins- pp65, gB and IE-1. The UNITE platform involves lysosomal targeting technology, fusing lysosome-associated protein 1 (LAMP1) with target antigens resulting in increased antigen presentation by MHC-I and II. ELISpot, flow cytometry and ELISA techniques were used to evaluate the vaccine immunogenicity and a syngeneic, orthotopic GBM mouse model that expresses HCMV proteins was used for efficacy studies. The tumor microenvironment studies were done using flow cytometry and MSD assay. Results: ITI-1001 vaccination showed a robust antigen-specific CD4 and CD8 T cell response in addition to a strong humoral response. Using GBM mouse model, therapeutic treatment of ITI-1001 vaccine resulted in ̃56% survival with subsequent long-term immunity. Investigating the tumor microenvironment showed significant CD4 T cell infiltration as well as enhanced Th1 and CD8 T cell activation. Regulatory T cells were also upregulated upon ITI-1001 vaccination and would be an attractive target to further improve this therapy. In addition, tumor burden negatively correlated with number of activated CD4 T cells (CD4 IFNγ+) reiterating the importance of CD4 activation in ITI-1001 efficacy and potentially identifying treatment responders and non-responders. Further characterization of these two groups showed high infiltration of CD3+, CD4+ and CD8+ T cells in responders compared with non- responders along with higher CD8 T cell activation. Conclusions: Thus, we show that vaccination with HCMV antigens using the ITI-1001-UNITE platform generates strong cellular and humoral immune responses, triggering significant anti-tumor activity that leads to enhanced survival in mice with GBM.


2020 ◽  
Author(s):  
Yunkai Wang ◽  
Jie Wang ◽  
Lu Han ◽  
Yun Li Shen ◽  
Jie Yun You ◽  
...  

Abstract Background: Triggering receptor expressed on myeloid cells (TREM)-1is identified as a major upstream proatherogenic receptor. However, the cellular processes modulated by TREM-1 in the development of atherosclerosis and plaque destabilization has not been fully elucidated. In this study, we investigated the effects of TREM-1 on dendritic cell maturation and dendritic cell–mediated T-cell activation induced by oxidized low-density lipoprotein (ox-LDL) in atherogenesis. Methods: Human peripheral blood monocytes were differentiated to dendritic cells and stimulated by ox-LDL. Naive autologous T cells were co-cultured with pretreated dendritic cells.The expressionof TREM-1 and the production of inflammatory cytokines were assessed by real-time PCR, western blot and ELISA.The expression of immune factors was determined with FACS to evaluate dendritic cell maturation and T-cell activation. Results: Stimulation with ox-LDL promoted dendritic cell maturation, TREM-1 expression and T-cell activation, and exposure of T cells to ox-LDL-treated dendritic cells induced production of interferon-γ and IL-17. Blocking TREM-1 suppressed dendritic cell maturation with low expression of CD1a, CD40, CD86 and HLA-DR, decreased production of TNF-α, IL-1β, IL-6 and MCP-1, and increased secretion of TGF-β and IL-10. In addition, stimulation of ox-LDL induced miR-155, miR-27, Let-7c and miR-185 expression, whereas inhibition of TREM-1 repressed miRNA-155. Silencing TREM-1 or miRNA-155 increased SOCS1 expression induced by ox-LDL. T cells derived from carotid atherosclerotic plaques or healthy individuals showed similar result patterns. Conclusion: These data suggest that TREM-1 modulates maturation of dendritic cells and activation of plaque T cells induced by ox-LDL, a pivotal player in atherogenesis.


Hypertension ◽  
2018 ◽  
Vol 72 (Suppl_1) ◽  
Author(s):  
Pierre Paradis ◽  
Antoine Caillon ◽  
Ernesto L Schiffrin

PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0222301 ◽  
Author(s):  
Hui Li ◽  
Erica Burgueño-Bucio ◽  
Shin Xu ◽  
Shaonli Das ◽  
Roxana Olguin-Alor ◽  
...  

2019 ◽  
Vol 11 (2) ◽  
pp. 108-123
Author(s):  
Dan Tong ◽  
Li Zhang ◽  
Fei Ning ◽  
Ying Xu ◽  
Xiaoyu Hu ◽  
...  

Abstract Common γ chain cytokines are important for immune memory formation. Among them, the role of IL-2 remains to be fully explored. It has been suggested that this cytokine is critically needed in the late phase of primary CD4 T cell activation. Lack of IL-2 at this stage sets for a diminished recall response in subsequent challenges. However, as IL-2 peak production is over at this point, the source and the exact mechanism that promotes its production remain elusive. We report here that resting, previously antigen-stimulated CD4 T cells maintain a minimalist response to dendritic cells after their peak activation in vitro. This subtle activation event may be induced by DCs without overt presence of antigen and appears to be stronger if IL-2 comes from the same dendritic cells. This encounter reactivates a miniature IL-2 production and leads a gene expression profile change in these previously activated CD4 T cells. The CD4 T cells so experienced show enhanced reactivation intensity upon secondary challenges later on. Although mostly relying on in vitro evidence, our work may implicate a subtle programing for CD4 T cell survival after primary activation in vivo.


2020 ◽  
Vol 11 ◽  
Author(s):  
Marie-Line Puiffe ◽  
Aurélie Dupont ◽  
Nouhoum Sako ◽  
Jérôme Gatineau ◽  
José L. Cohen ◽  
...  

IL4I1 is an immunoregulatory enzyme that inhibits CD8 T-cell proliferation in vitro and in the tumoral context. Here, we dissected the effect of IL4I1 on CD8 T-cell priming by studying the differentiation of a transgenic CD8 T-cell clone and the endogenous repertoire in a mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection. Unexpectedly, we show that IL4I1 accelerates the expansion of functional effector CD8 T cells during the first several days after infection and increases the average affinity of the elicited repertoire, supporting more efficient LCMV clearance in WT mice than IL4I1-deficient mice. Conversely, IL4I1 restrains the differentiation of CD8 T-cells into long-lived memory precursors and favors the memory response to the most immunodominant peptides. IL4I1 expression does not affect the phenotype or antigen-presenting functions of dendritic cells (DCs), but directly reduces the stability of T-DC immune synapses in vitro, thus dampening T-cell activation. Overall, our results support a model in which IL4I1 increases the threshold of T-cell activation, indirectly promoting the priming of high-affinity clones while limiting memory T-cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document