scholarly journals Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset

2016 ◽  
Vol 213 (7) ◽  
pp. 1223-1239 ◽  
Author(s):  
Frederico R.C. Costa ◽  
Marcela C.S. Françozo ◽  
Gabriela G. de Oliveira ◽  
Aline Ignacio ◽  
Angela Castoldi ◽  
...  

Type 1 diabetes (T1D) is an autoimmune disease that is triggered by both genetic and environmental factors, resulting in the destruction of pancreatic β cells. The disruption of the intestinal epithelial barrier and consequent escape of microbial products may be one of these environmental triggers. However, the immune receptors that are activated in this context remain elusive. We show here that during streptozotocin (STZ)-induced T1D, the nucleotide-binding oligomerization domain containing 2 (NOD2), but not NOD1, participates in the pathogenesis of the disease by inducing T helper 1 (Th1) and Th17 cells in the pancreatic LNs (PLNs) and pancreas. Additionally, STZ-injected wild-type (WT) diabetic mice displayed an altered gut microbiota compared with vehicle-injected WT mice, together with the translocation of bacteria to the PLNs. Interestingly, WT mice treated with broad-spectrum antibiotics (Abx) were fully protected from STZ-induced T1D, which correlated with the abrogation of bacterial translocation to the PLNs. Notably, when Abx-treated STZ-injected WT mice received the NOD2 ligand muramyl dipeptide, both hyperglycemia and the proinflammatory immune response were restored. Our results demonstrate that the recognition of bacterial products by NOD2 inside the PLNs contributes to T1D development, establishing a new putative target for intervention during the early stages of the disease.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. SCI-22-SCI-22
Author(s):  
Laurie H. Glimcher ◽  
Vanja Lazarevic ◽  
Joerg Ermann ◽  
Wendy Garrett

Abstract Abstract SCI-22 The transcription factor T-bet, isolated in our laboratory a decade ago, is a master regulator of Type 1 immunity in cells of both the adaptive and innate immune system. In adaptive immunity, T-bet instigates genetic programs in T helper 1 (Th1) cells and is required for production of the hallmark Th1 cytokine IFNg. It simultaneously represses the differentiation of T helper 2 cells and the profibrotic cytokines IL-13 and TGFb. We have recently determined that T-bet is also a repressor of the Th17 genetic program and have established the molecular mechanisms that underpin that function. T-bet also controls the optimal differentiation and function of the cytolytic CD8 cell, and is required for the development of the natural killer T cell. T-bet deficient animals are largely protected from autoimmune/inflammatory diseases such as multiple sclerosis, systemic lupus, type 1 diabetes and inflammatory arthritis, but are susceptible to type 2 driven diseases such as asthma and scleroderma. An exception to this overall rule is our recent discovery that in the absence of an adaptive immune system, the majority of mice lacking T-bet develop a spontaneous ulcerative colitis that progresses to colonic dysplasia and rectal adenocarcinoma. This colitis and inflammation associated colorectal cancer are MyD88 independent, driven by colitogenic flora and ameliorated by treatment with TNF blockade, antibiotics, and transfer of T regulatory cells. This phenotype maps to the T-bet deficient dendritic cell that drives this pro-inflammatory program; selective over-expression of T-bet in DCs was sufficient to reduce colonic inflammation and prevent the progression to neoplasia. The molecular pathogenesis of TRUC colitis and colitis-associated colorectal (caCRC) shares several key features with human caCRC. This model of colitis and colitis-associated colorectal cancer provides opportunities to further understand host-microbial relationships in inflammation and neoplasia and test preventative and therapeutic strategies pre-clinically. The function and mechanism of action of T-bet in the pathogenesis of immune system driven diseases will be discussed. Disclosures: Glimcher: Merck: Consultancy, Patents & Royalties, Research Funding; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.


2007 ◽  
Vol 23 (6) ◽  
pp. 462-471 ◽  
Author(s):  
Katerina Stechova ◽  
Kristyna Bohmova ◽  
Zuzana Vrabelova ◽  
Annelie Sepa ◽  
Gabriela Stadlerova ◽  
...  

2011 ◽  
Vol 5 (09) ◽  
pp. 640-645 ◽  
Author(s):  
Mario Milco D'Elios ◽  
Marisa Benagiano ◽  
Chiara Della Bella ◽  
Amedeo Amedei

T-cell responses are crucial for the outcome of any infection. The type of effector T-cell reaction is determined by a complex interaction of antigen-presenting cells with naive T cells and involves genetic and environmental factors, including the type of antigen, cytokines, chemokines, co-stimulatory molecules, and signalling cascades. The decision for the immune response to go in a certain direction is based not on one signal alone, but rather on many different elements acting both synergistically and antagonistically, and through feedback loops leading to activation or inhibition of T cells. In the course of evolution different types of T cells have developed, such as T helper 1 (Th1) cells, which protect against intracellular bacteria; Th2 cells, which play a role against parasites; and Th17 cells, which face extracellular bacteria and fungi


2019 ◽  
Vol 10 (4) ◽  
pp. 3042-3054
Author(s):  
Ravikumar N ◽  
Kavitha CH N

Dysregulated equilibrium between T helper 1 (Th1) and T helper 2 (Th2) immune responses has been implicated in the pathogenesis of type 1 diabetes (T1D) and asthma. Conflicting evidence exist explaining the association between T1D and asthma and is still a point of debate. In the present study, our objective was to investigate the influence of associated T1Dco morbid condition on the induction of experimental asthma in mice and also to evaluate the efficacy of Dexamethasone (0.5 mg/kg, s.c.ly) in these mice. Type 1 diabetes was induced by a single intravenous injection of alloxan (80 mg/kg) in Balb/c mice. Following diabetes induction, mice were sensitized with an intraperitoneal injection of 50 µg ovalbumin (Ova) emulsified in 2.5 mg aluminum hydroxide on days 3 and 8. From day 13 to day 15, animals were challenged intranasally with 100 µg Ova in 25 µl of sterile saline. Dexamethasone treatment was initiated on sensitization day and continued once in 2 days thereafter until day 15. Control animals received only saline without Ova. On day 16, mice were subjected to nasal hyperresponsiveness (NHR) immediately after the Ova challenge. Bronchioalveolar lavage fluid (BALF), blood, and lungs were collected 1h post completion of NHR for further analysis. Alloxan diabetic mice showed significantly lower levels of eosinophils in BALF and blood with the corresponding decrease in inflammatory cells around airways in hematoxylin & eosin-stained lung sections, but with no change in NHR than in non-diabetics after Ova sensitization and challenge. Dexamethasone treatment showed a significant reduction of airway inflammation and related Th2 immune responses, with a lesser magnitude of efficacy in diabetic asthma mice than in non-diabetic asthma mice. The presence of T1D featured a unique, yet the intermediary stage of asthma induction and also presented an altered magnitude of Dexamethasone efficacy compared to the absence of T1D in the murine model of Ova induced asthma.


1999 ◽  
Vol 73 (1) ◽  
pp. 316-324 ◽  
Author(s):  
Youichi Suzuki ◽  
Yoshio Koyanagi ◽  
Yuetsu Tanaka ◽  
Tsutomu Murakami ◽  
Naoko Misawa ◽  
...  

ABSTRACT Cytokines are potent stimuli for CD4+-T-cell differentiation. Among them, interleukin-12 (IL-12) and IL-4 induce naive CD4+ T cells to become T-helper 1 (Th1) or Th2 cells, respectively. In this study we found that macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains replicated more efficiently in IL-12-induced Th1-type cultures derived from normal CD4+ T cells than did T-cell-line-tropic (T-tropic) strains. In contrast, T-tropic strains preferentially infected IL-4-induced Th2-type cultures derived from the same donor CD4+ T cells. Additional studies using chimeric viruses demonstrated that the V3 region of HIV-1 gp120 was the principal determinant for efficiency of replication. Cell fusion analysis showed that cells expressing envelope protein from a T-tropic strain effectively fused with IL-4-induced Th2-type culture cells. Flow cytometric analysis showed that the level of CCR5 expression was higher on IL-12-induced Th1-type culture cells, whereas CXCR4 was highly expressed on IL-4-induced Th2-type culture cells, although a low level of CXCR4 expression was observed on IL-12-induced Th1-type culture cells. These results indicate that HIV-1 isolates exhibit differences in the ability to infect CD4+-T-cell subsets such as Th1 or Th2 cells and that this difference may partly correlate with the expression of particular chemokine receptors on these cells. The findings suggest that immunological conditions are one of the factors responsible for inducing selection of HIV-1 strains.


2021 ◽  
Author(s):  
Awadalkareem Adam ◽  
Qing Shi ◽  
Binbin Wang ◽  
Jing Zou ◽  
Junhua Mai ◽  
...  

Development of optimal SARS-CoV-2 vaccines to induce potent, long-lasting immunity and provide cross-reactive protection against emerging variants remains a high priority. Here, we report that a modified porous silicon microparticle (mPSM)-adjuvanted SARS-CoV-2 receptor-binding domain (RBD) vaccine activated dendritic cells and generated more potent and durable SARS-CoV-2-specific systemic humoral and type 1 helper T (Th) cell-mediated immune responses than alum-formulated RBD following parenteral vaccination, and protected mice from SARS-CoV-2 and Beta variant infection. mPSM facilitated the uptake of SARS-CoV-2 RBD antigens by nasal and airway epithelial cells. Parenteral and intranasal prime and boost vaccinations with mPSM-RBD elicited potent systemic and lung resident memory T and B cells and SARS-CoV-2 specific IgA responses, and markedly diminished viral loads and inflammation in the lung following SARS-CoV-2 Delta variant infection. Our results suggest that mPSM can serve as potent adjuvant for SARS-CoV-2 subunit vaccine which is effective for systemic and mucosal vaccination.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 358-358
Author(s):  
Felix S Lichtenegger ◽  
Katharina Mueller ◽  
Wolfgang Hiddemann ◽  
Dolores J Schendel ◽  
Marion Subklewe

Abstract Abstract 358FN2 Dendritic cells (DCs) are important regulators of the human immune response. By means of direct intercellular interactions and secretion of cytokines, they can induce a stimulatory or a regulatory response, depending on the environment in which they developed. In vitro, it is possible to imitate this process by addition of various cytokines. The aim of this study was to evaluate DCs matured by different cytokine cocktails for expression of immunostimulatory and -inhibitory molecules and correspondent activation of T helper 1 (Th1) and natural killer (NK) cells. The selection of these cocktails was guided by potential clinical application and usage in a GMP setting. We compared three different ways of DC generation from peripheral blood monocytes of healthy donors: 1) maturation by a cocktail including the TLR7/8 agonist R848 (TLR-mDCs), 2) DC generation by the standard combination of proinflammatory cytokines (IL-4, GM-CSF, IL-1β, PGE2, TNF-α, and IL-6) applied in many clinical studies so far (cc-mDCs), and 3) addition of IL-10 in order to induce a more regulatory phenotype (IL10-mDCs). The expression of a broad range of costimulatory and coinhibitory molecules (CD80, CD86, CD273, CD274, CD275, CD276, B7-H4, HVEM, CD30L, CD70, CD134L = OX40L, CD137L = 4-1BBL) on the surface of these DC populations was analyzed by FACS. Secretion of various cytokines crucial for interaction with other immune cells (IL-12p70, IL-10, TNF-α, IFN-γ, IL-2, and TGF-β) was measured by cytometric bead array after stimulation with CD40 ligand. In order to assess the functional importance of these signals, we performed in vitro polarization assays for T helper cells after co-culture with DCs and measured the in vitro stimulatory potential of the DCs for natural killer (NK) cells by CD69 upregulation and intracellular IFN-γ staining. We could show that TLR-mDCs were characterized by a predominance of costimulatory (e.g. CD80, CD86) relative to coinhibitory molecules (e.g. CD273, CD274, HVEM). When stimulated by CD40L, they displayed a cytokine profile with very high IL-12p70 and TNF-α, but little if any IL-10 production. In a co-culture with autologous T cells, the combination of these signals resulted in a strong polarization toward IFN-γ secreting Th1 cells, with little or no stimulation of Th2 and Th17 cells. The costimulatory profile of cc-mDCs, in comparison, was shifted toward a lower expression of costimulatory molecules and similar or higher expression of coinhibitory molecules (ratio of CD86 to CD273 expression around 40 compared to > 60 for TLR-mDCs, p < 0.005). No IL-12p70 and low levels of IL-10 were secreted. These signals were reflected in a less pronounced type 1 polarization of T helper cells. IL10-mDCs expressed very low levels of CD80 and CD86 and displayed a coinhibitory molecule pattern similar to cc-mDCs. Additionally, they secreted the immunoregulatory molecule IL-10 in higher amounts and did not activate T helper cells at all. As IL-12p70 is an important factor for NK cell activation, only TLR-mDCs were capable of upregulating the activation marker CD69 on NK cells and inducing significant secretion of IFN-γ. Both Th1 and NK cells play an important role in tumor defense. With this set of data, we clearly showed that TLR-mDCs, in consequence of their positive costimulatory profile and their high IL-12p70 secretion, are superior with respect to type 1 polarization of T cells and activation of NK cells. They are therefore highly suitable for application in cancer immunotherapy. This DC type will be used in a phase I/II trial for postremission therapy in patients with non-favorable AML, which will start in our clinic in 2012. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document