scholarly journals Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection

2017 ◽  
Vol 214 (3) ◽  
pp. 651-667 ◽  
Author(s):  
Claire L. Gordon ◽  
Michelle Miron ◽  
Joseph J.C. Thome ◽  
Nobuhide Matsuoka ◽  
Joshua Weiner ◽  
...  

T cell responses to viruses are initiated and maintained in tissue sites; however, knowledge of human antiviral T cells is largely derived from blood. Cytomegalovirus (CMV) persists in most humans, requires T cell immunity to control, yet tissue immune responses remain undefined. Here, we investigated human CMV-specific T cells, virus persistence and CMV-associated T cell homeostasis in blood, lymphoid, mucosal and secretory tissues of 44 CMV seropositive and 28 seronegative donors. CMV-specific T cells were maintained in distinct distribution patterns, highest in blood, bone marrow (BM), or lymph nodes (LN), with the frequency and function in blood distinct from tissues. CMV genomes were detected predominantly in lung and also in spleen, BM, blood and LN. High frequencies of activated CMV-specific T cells were found in blood and BM samples with low virus detection, whereas in lung, CMV-specific T cells were present along with detectable virus. In LNs, CMV-specific T cells exhibited quiescent phenotypes independent of virus. Overall, T cell differentiation was enhanced in sites of viral persistence with age. Together, our results suggest tissue T cell reservoirs for CMV control shaped by both viral and tissue-intrinsic factors, with global effects on homeostasis of tissue T cells over the lifespan.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4642-4642
Author(s):  
Xin Wang ◽  
Wenbo Zhao ◽  
Yanxia Liu ◽  
Ying Li

Abstract Polycythaemia vera (PV) is a clonal disorder arising from a pluripotent hematopoietic progenitor cell. The etiology of PV remains unknown and there is no consensus as to the optimal therapy for this disorder. T regulatory (Treg) cells play a vital role in the maintenance of self-tolerance, control of auto-immunity and regulation of T-cell homeostasis, and they modulate overall immune responses against a variety of pathogens. Recent studies revealed that Treg cells play a crucial role in the process of hematopoietic activity. However, the effect of Treg cells in PV has not been reported. The Treg cells might participate in the dysfunction of T-cell immunity in PV. The profile and function of Treg cells in PV patients were explored in this study. Peripheral blood was withdrawn from 21 PV patients (Female 8 ; Male 13), as well as 25 age-matched healthy donors (F 9 ; M 16) as controls. All samples were taken after informed consent and collected from PV patients prior to treatment. Diagnoses of PV were made according to clinical and laboratory criteria. The peripheral blood mononuclear cells (PBMCs) were subjected to flow cytometry analyses after labeling with anti-CD4, anti-CD25, and anti-Foxp3 antibodies. Real-time PCR and Western blotting were also performed to identify quantitative FOXP3 mRNA expression and protein level in the PBMCs from PV in comparison to controls. The relationships between the percentage of Treg cells, the expressions for quantitative mRNA and protein, with the clinical data were assessed. The percentage of CD4+ T-cells was significant decreased in the group of PV than in normal control (28.7±7.07% vs 38.6±8.38%, p<0.05). But the percentage of CD4+CD25+FOXP3+ T-cells (Treg cells) in PV patients was significantly increased when compared to the control (10.93±4.02% vs 5.86±1.99%, p<0.05). Moreover, the quantitative mRNA expression of FOXP3 (64.23±18.52 vs 16.06±4.78, p<0.05) and protein expression of FOXP3 (0.74±0.16 vs 0.62±0.10, p<0.05)) were significantly enhanced in PV patients (shown in Figure 1). In conclusion, we showed that patients with PV have enhanced percentage of Treg cells in their peripheral blood. This was substantiated further with the finding that overexpressions of FOXP3 in PV both in mRNA and protein level. These results highlight important Treg-cell abnormalities in patients with PV because natural Treg cells are significantly increased in number and function. The underlying mechanism is still undefined, but the increased frequency and function of Treg cells might account for the abnormal T cell immunity in PV patients. It was suggested that there may be differently suppressive machanisms for Treg in these patients. The elevated Treg cells in PV might be activated and then affect the hematopoietic activity. We believe that Treg cells might involved in the dysfunction of T/NK cells in their disability to downregulate the hematopoietic proliferation in PV. And the expansion of Treg cells may be a feature of PV and associated with the pathogenesis of PV. Further investigation in this abnormality might provide novel therapy clue for this disease. Figure Figure


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Stephanie M. Dillon ◽  
Tezha A. Thompson ◽  
Allison J. Christians ◽  
Martin D. McCarter ◽  
Cara C. Wilson

Abstract Background The etiology of the low-level chronic inflammatory state associated with aging is likely multifactorial, but a number of animal and human studies have implicated a functional decline of the gastrointestinal immune system as a potential driver. Gut tissue-resident memory T cells play critical roles in mediating protective immunity and in maintaining gut homeostasis, yet few studies have investigated the effect of aging on human gut T cell immunity. To determine if aging impacted CD4 T cell immunity in the human large intestine, we utilized multi-color flow cytometry to measure colonic lamina propria (LP) CD4 T cell frequencies and immune-modulatory marker expression in younger (mean ± SEM: 38 ± 1.5 yrs) and older (77 ± 1.6 yrs) adults. To determine cellular specificity, we evaluated colon LP CD8 T cell frequency and phenotype in the same donors. To probe tissue specificity, we evaluated the same panel of markers in peripheral blood (PB) CD4 T cells in a separate cohort of similarly aged persons. Results Frequencies of colonic CD4 T cells as a fraction of total LP mononuclear cells were higher in older persons whereas absolute numbers of colonic LP CD4 T cells per gram of tissue were similar in both age groups. LP CD4 T cells from older versus younger persons exhibited reduced CTLA-4, PD-1 and Ki67 expression. Levels of Bcl-2, CD57, CD25 and percentages of activated CD38+HLA-DR+ CD4 T cells were similar in both age groups. In memory PB CD4 T cells, older age was only associated with increased CD57 expression. Significant age effects for LP CD8 T cells were only observed for CTLA-4 expression, with lower levels of expression observed on cells from older adults. Conclusions Greater age was associated with reduced expression of the co-inhibitory receptors CTLA-4 and PD-1 on LP CD4 T cells. Colonic LP CD8 T cells from older persons also displayed reduced CTLA-4 expression. These age-associated profiles were not observed in older PB memory CD4 T cells. The decline in co-inhibitory receptor expression on colonic LP T cells may contribute to local and systemic inflammation via a reduced ability to limit ongoing T cell responses to enteric microbial challenge.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A574-A574
Author(s):  
Ellen Duong ◽  
Timothy Fessenden ◽  
Arjun Bhutkar ◽  
Stefani Spranger

BackgroundCytotoxic (CD8+) T-cells are required for tumor eradication and durable anti-tumor immunity.1 The induction of tumor-reactive CD8+ T-cells is predominately attributed to a subset of dendritic cells (DC) called Batf3-driven DC1, given their robust ability to cross-present antigens for T-cell priming and their role in effector T-cell recruitment.2–4 Presence of the DC1 signature in tumors correlates with improved survival and response to immunotherapies.5–7 Yet, most tumors with a DC1 infiltrate still progress, suggesting that while DC1 can initiate tumor-reactive CD8+ T-cell responses, they are unable to sustain them. Therefore, there is a critical need to identify and engage additional stimulatory DC subsets to strengthen anti-tumor immunity and boost immunotherapy responses.MethodsTo identify DC subsets that drive poly-functional CD8+ T-cell responses, we compared the DC infiltrate of a spontaneously regressing tumor with a progressing tumor. Multicolor flow immunophenotyping and single-cell RNA-sequencing were used to profile the DC compartment of both tumors. IFNγ-ELISpot was performed on splenocytes to assess for systemic tumor-reactive T-cell responses. Sorted DC subsets from tumors were co-cultured with TCR-transgenic T-cells ex vivo to evaluate their stimulatory capacity. Cross-dressing (in vivo/ex vivo) was assayed by staining for transfer of tumor-derived H-2b MHC complexes to Balb/c DC, which express the H-2d haplotype. Protective systemic immunity was assayed via contralateral flank tumor outgrowth experiments.ResultsRegressor tumors were infiltrated with more cross-presenting DC1 than progressor tumors. However, tumor-reactive CD8+ T-cell responses and tumor control were preserved in Batf3-/- mice lacking DC1, indicating that anti-tumor immune responses could be induced independent of DC1. Through functional assays, we established that anti-tumor immunity against regressor tumors required CD11c+ DC and cGAS/STING-independent type-I-interferon-sensing. Single-cell RNA-sequencing of the immune infiltrate of regressor tumors revealed a novel CD11b+ DC subset expressing an interferon-stimulated gene signature (ISG+ DC). Flow studies demonstrated that ISG+ DC were more enriched in regressor tumors than progressor tumors. We showed that ISG+ DC could activate CD8+ T-cells by cross-dressing with tumor-derived peptide-MHC complexes, thereby bypassing the requirement for cross-presentation to initiate CD8+ T-cell-driven immunity. ISG+ DC highly expressed cytosolic dsRNA sensors (RIG-I/MDA5) and could be therapeutically harnessed by exogenous addition of a dsRNA analog to drive protective CD8+ T-cell responses in DC1-deficient mice.ConclusionsThe DC infiltrate in tumors can dictate the strength of anti-tumor immunity. Harnessing multiple stimulatory DC subsets, such as cross-presenting DC1 and cross-dressing ISG+ DC, provides a therapeutic opportunity to enhance anti-tumor immunity and increase immunotherapy responses.ReferencesFridman WH, et al. The immune contexture in human tumours: impact on clinical outcome. Nature Reviews Cancer 2012;12(4): p. 298–306.Hildner K, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 2008;322(5904):p. 1097–100.Spranger S, et al. Tumor-Residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 2017;31(5):p. 711–723.e4.Roberts, EW, et al., Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 2016;30(2): p. 324–336.Broz ML, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 2014;26(5): p. 638–52.Salmon H., et al., Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity, 2016. 44(4): p. 924–38.Sánchez-Paulete AR, et al., Cancer immunotherapy with immunomodulatory anti-CD137 and Anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov, 2016;6(1):p. 71–9.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 199
Author(s):  
Anna Schmidt ◽  
Dennis Lapuente

Current flu vaccines rely on the induction of strain-specific neutralizing antibodies, which leaves the population vulnerable to drifted seasonal or newly emerged pandemic strains. Therefore, universal flu vaccine approaches that induce broad immunity against conserved parts of influenza have top priority in research. Cross-reactive T cell responses, especially tissue-resident memory T cells in the respiratory tract, provide efficient heterologous immunity, and must therefore be a key component of universal flu vaccines. Here, we review recent findings about T cell-based flu immunity, with an emphasis on tissue-resident memory T cells in the respiratory tract of humans and different animal models. Furthermore, we provide an update on preclinical and clinical studies evaluating T cell-evoking flu vaccines, and discuss the implementation of T cell immunity in real-life vaccine policies.


Blood ◽  
2011 ◽  
Vol 117 (7) ◽  
pp. 2200-2210 ◽  
Author(s):  
Rikke Bæk Sørensen ◽  
Sine Reker Hadrup ◽  
Inge Marie Svane ◽  
Mads Christian Hjortsø ◽  
Per thor Straten ◽  
...  

Abstract Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme that is implicated in suppressing T-cell immunity in normal and pathologic settings. Here, we describe that spontaneous cytotoxic T-cell reactivity against IDO exists not only in patients with cancer but also in healthy persons. We show that the presence of such IDO-specific CD8+ T cells boosted T-cell immunity against viral or tumor-associated antigens by eliminating IDO+ suppressive cells. This had profound effects on the balance between interleukin-17 (IL-17)–producing CD4+ T cells and regulatory T cells. Furthermore, this caused an increase in the production of the proinflammatory cytokines IL-6 and tumor necrosis factor-α while decreasing the IL-10 production. Finally, the addition of IDO-inducing agents (ie, the TLR9 ligand cytosine-phosphate-guanosine, soluble cytotoxic T lymphocyte–associated antigen 4, or interferon γ) induced IDO-specific T cells among peripheral blood mononuclear cells from patients with cancer as well as healthy donors. In the clinical setting, IDO may serve as an important and widely applicable target for immunotherapeutic strategies in which IDO plays a significant regulatory role. We describe for the first time effector T cells with a general regulatory function that may play a vital role for the mounting or maintaining of an effective adaptive immune response. We suggest terming such effector T cells “supporter T cells.”


Science ◽  
2021 ◽  
Vol 371 (6527) ◽  
pp. 405-410
Author(s):  
Ke Xu ◽  
Na Yin ◽  
Min Peng ◽  
Efstathios G. Stamatiades ◽  
Amy Shyu ◽  
...  

Infection triggers expansion and effector differentiation of T cells specific for microbial antigens in association with metabolic reprograming. We found that the glycolytic enzyme lactate dehydrogenase A (LDHA) is induced in CD8+ T effector cells through phosphoinositide 3-kinase (PI3K) signaling. In turn, ablation of LDHA inhibits PI3K-dependent phosphorylation of Akt and its transcription factor target Foxo1, causing defective antimicrobial immunity. LDHA deficiency cripples cellular redox control and diminishes adenosine triphosphate (ATP) production in effector T cells, resulting in attenuated PI3K signaling. Thus, nutrient metabolism and growth factor signaling are highly integrated processes, with glycolytic ATP serving as a rheostat to gauge PI3K-Akt-Foxo1 signaling in the control of T cell immunity. Such a bioenergetic mechanism for the regulation of signaling may explain the Warburg effect.


2018 ◽  
Vol 9 ◽  
Author(s):  
Cintia L. Araujo Furlan ◽  
Jimena Tosello Boari ◽  
Constanza Rodriguez ◽  
Fernando P. Canale ◽  
Facundo Fiocca Vernengo ◽  
...  

2018 ◽  
Vol 92 (17) ◽  
Author(s):  
Min Zhao ◽  
Junbo Chen ◽  
Shuguang Tan ◽  
Tao Dong ◽  
Hui Jiang ◽  
...  

ABSTRACT Since 2013, influenza A H7N9 virus has emerged as the most common avian influenza virus subtype causing human infection, and it is associated with a high fatality risk. However, the characteristics of immune memory in patients who have recovered from H7N9 infection are not well understood. We assembled a cohort of 45 H7N9 survivors followed for up to 15 months after infection. Humoral and cellular immune responses were analyzed in sequential samples obtained at 1.5 to 4 months, 6 to 8 months, and 12 to 15 months postinfection. H7N9-specific antibody concentrations declined over time, and protective antibodies persisted longer in severely ill patients admitted to the intensive care unit (ICU) and patients presenting with acute respiratory distress syndrome (ARDS) than in patients with mild disease. Frequencies of virus-specific gamma interferon (IFN-γ)-secreting T cells were lower in critically ill patients requiring ventilation than in patients without ventilation within 4 months after infection. The percentages of H7N9-specific IFN-γ-secreting T cells tended to increase over time in patients ≥60 years or in critically ill patients requiring ventilation. Elevated levels of antigen-specific CD8+ T cells expressing the lung-homing marker CD49a were observed at 6 to 8 months after H7N9 infection compared to those in samples obtained at 1.5 to 4 months. Our findings indicate the prolonged reconstruction and evolution of virus-specific T cell immunity in older or critically ill patients and have implications for T cell-directed immunization strategies. IMPORTANCE Avian influenza A H7N9 virus remains a major threat to public health. However, no previous studies have determined the characteristics and dynamics of virus-specific T cell immune memory in patients who have recovered from H7N9 infection. Our findings showed that establishment of H7N9-specific T cell memory after H7N9 infection was prolonged in older and severely affected patients. Severely ill patients mounted lower T cell responses in the first 4 months after infection, while T cell responses tended to increase over time in older and severely ill patients. Higher levels of antigen-specific CD8+ T cells expressing the lung-homing marker CD49a were detected at 6 to 8 months after infection. Our results indicated a long-term impact of H7N9 infection on virus-specific memory T cells. These findings advance our understanding of the dynamics of virus-specific memory T cell immunity after H7N9 infection, which is relevant to the development of T cell-based universal influenza vaccines.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 706
Author(s):  
Chunmei Fu ◽  
Li Zhou ◽  
Qing-Sheng Mi ◽  
Aimin Jiang

As the sentinels of the immune system, dendritic cells (DCs) play a critical role in initiating and regulating antigen-specific immune responses. Cross-priming, a process that DCs activate CD8 T cells by cross-presenting exogenous antigens onto their MHCI (Major Histocompatibility Complex class I), plays a critical role in mediating CD8 T cell immunity as well as tolerance. Current DC vaccines have remained largely unsuccessful despite their ability to potentiate both effector and memory CD8 T cell responses. There are two major hurdles for the success of DC-based vaccines: tumor-mediated immunosuppression and the functional limitation of the commonly used monocyte-derived dendritic cells (MoDCs). Due to their resistance to tumor-mediated suppression as inert vesicles, DC-derived exosomes (DCexos) have garnered much interest as cell-free therapeutic agents. However, current DCexo clinical trials have shown limited clinical benefits and failed to generate antigen-specific T cell responses. Another exciting development is the use of naturally circulating DCs instead of in vitro cultured DCs, as clinical trials with both human blood cDC2s (type 2 conventional DCs) and plasmacytoid DCs (pDCs) have shown promising results. pDC vaccines were particularly encouraging, especially in light of promising data from a recent clinical trial using a human pDC cell line, despite pDCs being considered tolerogenic and playing a suppressive role in tumors. However, how pDCs generate anti-tumor CD8 T cell immunity remains poorly understood, thus hindering their clinical advance. Using a pDC-targeted vaccine model, we have recently reported that while pDC-targeted vaccines led to strong cross-priming and durable CD8 T cell immunity, cross-presenting pDCs required cDCs to achieve cross-priming in vivo by transferring antigens to cDCs. Antigen transfer from pDCs to bystander cDCs was mediated by pDC-derived exosomes (pDCexos), which similarly required cDCs for cross-priming of antigen-specific CD8 T cells. pDCexos thus represent a new addition in our arsenal of DC-based cancer vaccines that would potentially combine the advantage of pDCs and DCexos.


Sign in / Sign up

Export Citation Format

Share Document