scholarly journals Detection of interferon alpha protein reveals differential levels and cellular sources in disease

2017 ◽  
Vol 214 (5) ◽  
pp. 1547-1555 ◽  
Author(s):  
Mathieu P. Rodero ◽  
Jérémie Decalf ◽  
Vincent Bondet ◽  
David Hunt ◽  
Gillian I. Rice ◽  
...  

Type I interferons (IFNs) are essential mediators of antiviral responses. These cytokines have been implicated in the pathogenesis of autoimmunity, most notably systemic lupus erythematosus (SLE), diabetes mellitus, and dermatomyositis, as well as monogenic type I interferonopathies. Despite a fundamental role in health and disease, the direct quantification of type I IFNs has been challenging. Using single-molecule array (Simoa) digital ELISA technology, we recorded attomolar concentrations of IFNα in healthy donors, viral infection, and complex and monogenic interferonopathies. IFNα protein correlated well with functional activity and IFN-stimulated gene expression. High circulating IFNα levels were associated with increased clinical severity in SLE patients, and a study of the cellular source of IFNα protein indicated disease-specific mechanisms. Measurement of IFNα attomolar concentrations by digital ELISA will enhance our understanding of IFN biology and potentially improve the diagnosis and stratification of pathologies associated with IFN dysregulation.

2010 ◽  
Vol 42 (2) ◽  
pp. 248-258 ◽  
Author(s):  
Yongming Sang ◽  
Raymond R. R. Rowland ◽  
Richard A. Hesse ◽  
Frank Blecha

Type I interferons (IFNs) are central to innate and adaptive immunity, and many have unique developmental and physiological functions. However, in most species, only two subtypes, IFN-α and IFN-β, have been well studied. Because of the increasing importance of zoonotic viral diseases and the use of pigs to address human research questions, it is important to know the complete repertoire and activity of porcine type I IFNs. Here we show that porcine type I IFNs comprise at least 39 functional genes distributed along draft genomic sequences of chromosomes 1 and 10. These functional IFN genes are classified into 17 IFN-α subtypes, 11 IFN-δ subtypes, 7 IFN-ω subtypes, and single-subtype subclasses of IFN-αω, IFN-β, IFN-ε, and IFN-κ. We found that porcine type I IFNs have diverse expression profiles and antiviral activities against porcine reproductive and respiratory syndrome virus (PRRSV) and vesicular stomatitis virus (VSV), with activity ranging from 0 to >105 U·ng−1·ml−1. Whereas most IFN-α subtypes retained the greatest antiviral activity against both PRRSV and VSV in porcine and MARC-145 cells, some IFN-δ and IFN-ω subtypes, IFN-β, and IFN-αω differed in their antiviral activity based on target cells and viruses. Several IFNs, including IFN-α7/11, IFN-δ2/7, and IFN-ω4, exhibited minimal or no antiviral activity in the tested target cell-virus systems. Thus comparative studies showed that antiviral activity of porcine type I IFNs is virus- and cell-dependent, and IFN-αs are positively correlated with induction of MxA, an IFN-stimulated gene. Collectively, these data provide fundamental genomic information for porcine type I IFNs, information that is necessary for understanding porcine physiological and antiviral responses.


2020 ◽  
Vol 11 ◽  
Author(s):  
Vinit Upasani ◽  
Carolina Scagnolari ◽  
Federica Frasca ◽  
Nikaïa Smith ◽  
Vincent Bondet ◽  
...  

The clinical presentation of dengue virus (DENV) infection is variable. Severe complications mainly result from exacerbated immune responses. Type I interferons (IFN-I) are important in antiviral responses and form a crucial link between innate and adaptive immunity. Their contribution to host defense during DENV infection remains under-studied, as direct quantification of IFN-I is challenging. We combined ultra-sensitive single-molecule array (Simoa) digital ELISA with IFN-I gene expression to elucidate the role of IFN-I in a well-characterized cohort of hospitalized Cambodian children undergoing acute DENV infection. Higher concentrations of type I IFN proteins were observed in blood of DENV patients, compared to healthy donors, and correlated with viral load. Stratifying patients for disease severity, we found a decreased expression of IFN-I in patients with a more severe clinical outcome, such as dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). This was seen in parallel to a correlation between low IFNα protein concentrations and decreased platelet counts. Type I IFNs concentrations were correlated to frequencies of plasmacytoid DCs, not DENV-infected myloid DCs and correlated inversely with neutralizing anti-DENV antibody titers. Hence, type I IFN produced in the acute phase of infection is associated with less severe outcome of dengue disease.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
L. Kui ◽  
G. C. Chan ◽  
P. P. W. Lee

Proinflammatory cytokines such as TNF-α and type I interferons (IFN) are pathogenic signatures of systemic lupus erythematosus, and plasmacytoid dendritic cells (pDCs) play a major role by predominantly producing IFN-α. Given the rise of importance in identifying tumor necrosis stimulated gene 6 (TSG-6) as a key anti-inflammatory regulator, we investigate its function and its ability to counteract proinflammatory cytokine secretion by pDCs in vitro. CpG-A and R837 induced significant endogenous TSG-6 expression in the pDC cell-line GEN2.2. Following recombinant human TSG-6 treatment and CpG-A or R837 stimulation, significant reduction in IFN-α and TNF-α was observed in healthy donors’ pDCs, and the same phenomenon was confirmed in GEN2.2. By CD44 blocking assay, we deduced that the suppressive effect of TSG-6 is mediated by CD44, by reducing IRF-7 phosphorylation. Our findings suggest that TSG-6 and its downstream signalling pathway could potentially be targeted to modulate proinflammatory cytokine expression in pDCs.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 542.2-542
Author(s):  
A. Avdeeva ◽  
E. Tchetina ◽  
G. Markova ◽  
E. Nasonov

Background:Type I interferons (IFN-Is) are a group of molecules with pleiotropic effects on the immune system forming a crucial link between innate and adaptive immune responses. The type I interferon pathway has been implicated in the pathogenesis of a number of rheumatic diseases, including rheumatoid arthritis. IFN activity is usually quantified using expression of interferon-stimulated genes (ISGs) referred to as an IFN signature. Acellbia (BIOCAD) is the first Russian rituximab (RTX) biosimilar which was approved for medical use in rheumatoid arthritis (RA) patients in Russia and some CIS countries.Objectives:To evaluate the changes in expression of ISGs in patients (pts) with RA during RTX biosimilar therapyMethods:20 RA pts (18 woman, Me;IQR age 61.5(54-66.5) years, disease duration 39.5(20-84) months, mean DAS 28 5.6(4.9-6.8)) received two intravenous RTX biosimilar infusions (600 mg №2) in combination with DMARDs and glucocorticoids. Laboratory biomarkers were assessed at baseline and 24 weeks after the first infusion of RTX. 5 genes (IFI44L, MX1, IFIT 1, RSAD2, EPSTI1) were selected for evaluation of the “interferon signature” (Type I IFN gene signature – IFNGS). IFI44L and IFIT1 expression was undetectable, therefore the remaining three genes (MSX1, EPSTI1, RSAD2) were included into further analysis. IFNGS was calculated as the average expression values of the three selected genes. The control group included 20 age and gender matching healthy donors.Results:The baseline expression levels of MX1-11.48 (5.45-19.38), EPSTI1-12.83 (5.62-19.64), RSAD2-5.16 (2.73-10.4), and IFNGS-10.3 (5.18-17.12) in RA patients were significantly higher compared to healthy donors– 1,26 (0,73-1,6); 1,06 (0,81-1,48); 0,93 (0,72-1,19); 1,09 (0,92-1,42), (p<0.05, respectively). IFNGS was detected in 15 (75%) patients, and was not found in 5 (15%) patients. RTX induced reduction in disease activity, and the level of acute phase reactants (ESR, CRP) after 12 and 24 weeks of therapy, p<0.05 (fig.1). Increased RSAD 2 expression (p<0.05) and a trend to increasing IFNGS levels (p=0.06) were documented in the whole group, and also in patients with moderate treatment effects by week 24. Among patients with a good EULAR response to therapy, changes in expression were not significant (p> 0.05) (fig.1)Figure 1.Conclusion:Expression of IFN-stimulated genes was increased in RA patients compared to healthy donors. Increased RSAD2 and IFNGS expression was documented in patients with moderate effect of RTX therapy, therefore, these findings have important clinical relevance as predictors of RA clinical course which necessitates personified approach to treatment.Disclosure of Interests:None declared


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1323.2-1324
Author(s):  
K. Sato ◽  
S. Mamada ◽  
C. Hayashi ◽  
T. Nagashima ◽  
S. Minota

Background:Biologic disease modifying anti-rheumatic drugs (DMARDs) have demonstrated that proinflammatory cytokines such as interleukin (IL-) 6 and tumor necrosis factor (TNF) play important roles in the pathogenesis of rheumatoid arthritis (RA). Other cytokines, such as type I interferons (IFNs), are also implicated in its pathogenesis (ref 1). However, the complete picture of the cytokine network involved in RA remains to be elucidated.Objectives:By quantifying sets of cytokines in the serum of RA patients before and after treatment with various biologic DMARDs, we sought to determine the effects of drugs on (A) type I IFNs, (B) soluble IL-6 receptors, and (C) other cytokines.Methods:52 patients with RA were treated with various biologic DMARDs (tocilizumab (TOC): 16, abatacept (ABT): 15, and TNF inhibitors (TNFi): 21). Serum samples were obtained (1) before, (2) approximately 4 weeks after (3) and approximately 12 weeks after the initiation of treatment. A suspension bead-array system was used for analysis; Bio-Plex Human Cytokine 17-plex Assay kits and Express Custom Panels (Bio-Rad), including IFN-β, IFN-α2, soluble IL-6 receptor α (sIL6Rα) and gp130 were used.Results:(1) As expected, the disease activity score 28-joiny count (DAS28) using the erythrocyte sedimentation rate (ESR) significantly decreased in all three groups (TOC, ABT and TNFi) by 12 weeks.(2) IFN-α2 was barely detected in the serum samples. IFN-β seemed to increase slightly in the ABT group, but the increase was not statistically significant.(3) The levels of sIL6Rα did not change substantially. Those of gp130 decreased slightly but significantly in the TOC group by 12 weeks.(4) The levels of IL-6 decreased significantly in the ABT group by 12 weeks. Those in the TNFi group decreased significantly at 4 weeks but not 12 weeks (Fig. 1A).(5) The levels of IL-7 decreased significantly only in the TOC group (Fig. 1B).Conclusion:(1) The biologic DMARDs tested in this study did not significantly affect the serum levels of type I IFNs in this study.(2) The decrease in gp130 in the TOC group may imply that gp130 is induced by IL-6, although whether this level of decrease has physiological significance is open to question.(3) Serum IL-6 was significantly decreased in the TNFi group at 4 weeks but not 12 weeks. TNF has been reported to induce IL-6 (ref 2), but negative feedback loop(s) may be present. Such a feedback system might make the discontinuation of TNFi difficult, even if patients are in remission.(4) IL-7 may be a target of IL-6. A higher level of IL-7 has been reported to be present in the joints of RA patients compared with osteoarthrosis and it is a cytokine implicated in the differentiation of osteoclasts (ref 3). This may partly explain the effect of TOC on preventing bone erosion in RA.References:[1]Ann Rheum Dis. 2007; 66: 1008–14[2]Rheumatology 2007; 46: 920-6[3]Rheumatology 2008; 47: 753-9Acknowledgments:We thank all the members of the Division of Rheumatology and Clinical Immunology, Department of Medicine, Jichi Medical University. We are also grateful to the patients involved in this study.Disclosure of Interests:Kojiro Sato Grant/research support from: Abbie, Pfizer, Chugai, Astellas, Mitsubishi-Tanabe, Ono, Takeda, Sachiko Mamada: None declared, Chiyomi Hayashi: None declared, Takao Nagashima: None declared, Seiji Minota: None declared


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Norzawani Buang ◽  
Lunnathaya Tapeng ◽  
Victor Gray ◽  
Alessandro Sardini ◽  
Chad Whilding ◽  
...  

AbstractThe majority of patients with systemic lupus erythematosus (SLE) have high expression of type I IFN-stimulated genes. Mitochondrial abnormalities have also been reported, but the contribution of type I IFN exposure to these changes is unknown. Here, we show downregulation of mitochondria-derived genes and mitochondria-associated metabolic pathways in IFN-High patients from transcriptomic analysis of CD4+ and CD8+ T cells. CD8+ T cells from these patients have enlarged mitochondria and lower spare respiratory capacity associated with increased cell death upon rechallenge with TCR stimulation. These mitochondrial abnormalities can be phenocopied by exposing CD8+ T cells from healthy volunteers to type I IFN and TCR stimulation. Mechanistically these ‘SLE-like’ conditions increase CD8+ T cell NAD+ consumption resulting in impaired mitochondrial respiration and reduced cell viability, both of which can be rectified by NAD+ supplementation. Our data suggest that type I IFN exposure contributes to SLE pathogenesis by promoting CD8+ T cell death via metabolic rewiring.


2021 ◽  
Author(s):  
Lauren A. Todd ◽  
Maxwell P. Bui-Marinos ◽  
Barbara A. Katzenback

Epigenetic regulators such as microRNAs are emerging as conserved regulators of innate antiviral immunity in vertebrates, yet their roles in amphibian antiviral responses remain uncharacterized. We profiled changes in microRNA expressions in the Xenopus laevis skin epithelial–like cell line Xela DS2 in response to poly(I:C) – an analogue of double-stranded viral RNA and inducer of type I interferons – or frog virus 3 (FV3), an immunoevasive virus associated with amphibian mortality events. We sequenced small RNA libraries generated from untreated, poly(I:C)–treated, and FV3–infected cells. We detected 136 known X. laevis microRNAs and discovered 133 novel X. laevis microRNAs. Sixty–five microRNAs were differentially expressed in response to poly(I:C), many of which were predicted to target regulators of antiviral pathways such as cGAS–STING, RIG–I/MDA–5, TLR signaling, and type I interferon signaling, as well as products of these pathways (NF–κB–induced and interferon-stimulated genes). In contrast, only 49 microRNAs were altered by FV3 infection, fewer of which were predicted to interact with antiviral pathways. Interestingly, poly(I:C) treatment or FV3 infection downregulated transcripts encoding factors of the host microRNA biogenesis pathway. Our study is the first to suggest that host microRNAs regulate innate antiviral immunity in frogs, and sheds light on microRNA–mediated mechanisms of immunoevasion by FV3.


2018 ◽  
Vol 97 (8) ◽  
pp. 893-900 ◽  
Author(s):  
J. Papinska ◽  
H. Bagavant ◽  
G.B. Gmyrek ◽  
M. Sroka ◽  
S. Tummala ◽  
...  

Sjögren syndrome (SS), a chronic autoimmune disorder causing dry mouth, adversely affects the overall oral health in patients. Activation of innate immune responses and excessive production of type I interferons (IFNs) play a critical role in the pathogenesis of this disorder. Recognition of nucleic acids by cytosolic nucleic acid sensors is a major trigger for the induction of type I IFNs. Upon activation, cytosolic DNA sensors can interact with the stimulator of interferon genes (STING) protein, and activation of STING causes increased expression of type I IFNs. The role of STING activation in SS is not known. In this study, to investigate whether the cytosolic DNA sensing pathway influences SS development, female C57BL/6 mice were injected with a STING agonist, dimethylxanthenone-4-acetic acid (DMXAA). Salivary glands (SGs) were studied for gene expression and inflammatory cell infiltration. SG function was evaluated by measuring pilocarpine-induced salivation. Sera were analyzed for cytokines and autoantibodies. Primary SG cells were used to study the expression and activation of STING. Our data show that systemic DMXAA treatment rapidly induced the expression of Ifnb1, Il6, and Tnfa in the SGs, and these cytokines were also elevated in circulation. In contrast, increased Ifng gene expression was dominantly detected in the SGs. The type I innate lymphoid cells present within the SGs were the major source of IFN-γ, and their numbers increased significantly within 3 d of treatment. STING expression in SGs was mainly observed in ductal and interstitial cells. In primary SG cells, DMXAA activated STING and induced IFN-β production. The DMXAA-treated mice developed autoantibodies, sialoadenitis, and glandular hypofunction. Our study demonstrates that activation of the STING pathway holds the potential to initiate SS. Thus, apart from viral infections, conditions that cause cellular perturbations and accumulation of host DNA within the cytosol should also be considered as possible triggers for SS.


2007 ◽  
Vol 35 (6) ◽  
pp. 1512-1514 ◽  
Author(s):  
M. Schröder ◽  
A.G. Bowie

Viral recognition is mediated by different classes of PRRs (pattern-recognition receptors) among which the TLRs (Toll-like receptors) and the RLHs [RIG (retinoic-acid-inducible)-like helicases] play major roles. The detection of PAMPs (pathogen-associated molecular patterns) by these PRRs leads to the initiation of signalling pathways that ultimately result in the activation of transcription factors such as NF-κB (nuclear factor κB) and IRF-3 [IFN (interferon) regulatory factor-3] and IRF-7 and the induction of pro-inflammatory cytokines and type I IFNs. Viruses have evolved a fine-tuned mechanism to evade detection by the immune system or to interfere with the resulting signalling pathways. Here, we discuss viral evasion proteins that specifically interfere with TLR and/or RLH signalling.


2019 ◽  
Author(s):  
Paulino Barragan-Iglesias ◽  
Úrzula Franco-Enzástiga ◽  
Vivekanand Jeevakumar ◽  
Andi Wangzhou ◽  
Vinicio Granados-Soto ◽  
...  

ABSTRACTOne of the first signs of viral infection is body-wide aches and pain. While this type of pain usually subsides, at the extreme, viral infections can induce painful neuropathies that can last for decades. Neither of these types of pain sensitization are well understood. A key part of the response to viral infection is production of interferons (IFNs), which then activate their specific receptors (IFNRs) resulting in downstream activation of cellular signaling and a variety of physiological responses. We sought to understand how type I IFNs (IFN-α and IFN-β) might act directly on nociceptors in the dorsal root ganglion (DRG) to cause pain sensitization. We demonstrate that type I IFNRs are expressed in small/medium DRG neurons and that their activation produces neuronal hyper-excitability and mechanical pain in mice. Type I IFNs stimulate JAK/STAT signaling in DRG neurons but this does not apparently result in PKR-eIF2α activation that normally induces an anti-viral response by limiting mRNA translation. Rather, type I interferons stimulate MNK-mediated eIF4E phosphorylation in DRG neurons to promote pain hypersensitivity. Endogenous release of type I IFNs with the double stranded RNA mimetic poly(I:C) likewise produces pain hypersensitivity that is blunted in mice lacking MNK-eIF4E signaling. Our findings reveal mechanisms through which type I IFNs cause nociceptor sensitization with implications for understanding how viral infections promote pain and can lead to neuropathies.SIGNIFICANCE STATEMENTIt is increasingly understood that pathogens interact with nociceptors to alert organisms to infection as well as to mount early host defenses. While specific mechanisms have been discovered for diverse bacteria and fungal pathogens, mechanisms engaged by viruses have remained elusive. Here we show that type 1 interferons, one of the first mediators produced by viral infection, act directly on nociceptors to produce pain sensitization. Type I interferons act via a specific signaling pathway (MNK-eIF4E signaling) that is known to produce nociceptor sensitization in inflammatory and neuropathic pain conditions. Our work reveals a mechanism through which viral infections cause heightened pain sensitivity


Sign in / Sign up

Export Citation Format

Share Document