scholarly journals TLR7/8 activation in neutrophils impairs immune complex phagocytosis through shedding of FcgRIIA

2017 ◽  
Vol 214 (7) ◽  
pp. 2103-2119 ◽  
Author(s):  
Christian Lood ◽  
Sabine Arve ◽  
Jeffrey Ledbetter ◽  
Keith B. Elkon

Neutrophils play a crucial role in host defense. However, neutrophil activation is also linked to autoimmune diseases such as systemic lupus erythematosus (SLE), where nucleic acid–containing immune complexes (IC) drive inflammation. The role of Toll-like receptor (TLR) signaling in processing of SLE ICs and downstream inflammatory neutrophil effector functions is not known. We observed that TLR7/8 activation leads to a furin-dependent proteolytic cleavage of the N-terminal part of FcgRIIA, shifting neutrophils away from phagocytosis of ICs toward the programmed form of necrosis, NETosis. TLR7/8-activated neutrophils promoted cleavage of FcgRIIA on plasmacytoid dendritic cells and monocytes, resulting in impaired overall clearance of ICs and increased complement C5a generation. Importantly, ex vivo derived activated neutrophils from SLE patients demonstrated a similar cleavage of FcgRIIA that was correlated with markers of disease activity, as well as complement activation. Therapeutic approaches aimed at blocking TLR7/8 activation would be predicted to increase phagocytosis of circulating ICs, while disarming their inflammatory potential.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hwa Chia Chai ◽  
Kek Heng Chua ◽  
Soo Kun Lim ◽  
Maude Elvira Phipps

Polymorphisms in genes involved in toll-like receptor/interferon signalling pathways have been reported previously to be associated with SLE in many populations. This study aimed to investigate the role of seven single nucleotide polymorphisms withinTNFAIP3,STAT4,andIRF5, which are involved in upstream and downstream pathways of type I interferon production, in SLE in the South East Asian populations. Genotyping of 360 Malaysian SLE patients and 430 normal healthy individuals revealed that minor alleles ofSTAT4rs7574865 and rs10168266 were associated with elevated risk of SLE in the Chinese and Malay patients, respectively (P=0.028, odds ratio(OR)=1.42;P=0.035,OR=1.80, respectively). Polymorphisms inTNFAIP3andIRF5did not show significant associations with SLE in any of the ethnicities. Combined analysis of the Malays, Chinese, and Indians for each SNP indicated thatSTAT4rs10168266 was significantly associated with the Malaysian SLE as a whole (P=0.014;OR=1.435). The meta-analysis ofSTAT4rs10168266, which combined the data of other studies and this study, further confirmed its importance as the risk factor for SLE by having pooled OR of 1.559 andPvalue of <0.001.


2019 ◽  
Vol 1 (1) ◽  
pp. H23-H31 ◽  
Author(s):  
Linda Alex ◽  
Nikolaos G Frangogiannis

The adult mammalian heart lacks regenerative capacity and heals through activation of an inflammatory cascade that leads to the formation of a collagen-based scar. Although scar formation is important to preserve the structural integrity of the ventricle, unrestrained inflammation and excessive fibrosis have been implicated in the pathogenesis of adverse post-infarction remodeling and heart failure. Interstitial cells play a crucial role in the regulation of cardiac repair. Although recent studies have explored the role of fibroblasts and immune cells, the cardiac pericytes have been largely ignored by investigators interested in myocardial biology. This review manuscript discusses the role of pericytes in the regulation of inflammation, fibrosis and angiogenesis following myocardial infarction. During the inflammatory phase of infarct healing, pericytes may regulate microvascular permeability and may play an important role in leukocyte trafficking. Moreover, pericyte activation through Toll-like receptor-mediated pathways may stimulate cytokine and chemokine synthesis. During the proliferative phase, pericytes may be involved in angiogenesis and fibrosis. To what extent pericyte to fibroblast conversion and pericyte-mediated growth factor synthesis contribute to the myocardial fibrotic response remains unknown. During the maturation phase of infarct healing, coating of infarct neovessels with pericytes plays an important role in scar stabilization. Implementation of therapeutic approaches targeting pericytes in the infarcted and remodeling heart remains challenging, due to the lack of systematic characterization of myocardial pericytes, their phenotypic heterogeneity and the limited knowledge on their functional role.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jun Xu ◽  
Ulka Sachdev

Peripheral artery disease (PAD) can result in limb loss within six months of diagnosis in a subset of patients who cannot undergo endovascular or surgical revascularization yet continues to maintain a marginal position in cardiovascular research. While a body of literature continues to grow describing the role of danger signaling and innate immunity in cardiac biology, the role of these pathways in the ischemic myopathy associated with PAD has not been extensively studied. The following report will review the current literature on the role of Toll-like receptor (TLR) signaling in cardiovascular biology as well as in nonischemic myopathy. While attenuation of TLR signaling has not been shown to be clinically useful in the treatment of infectious inflammation, it may show promise in the management of severe arterial insufficiency.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A566-A566
Author(s):  
Tram Dao ◽  
Sandro Matosevic ◽  
Sagar Utturkar ◽  
Nadia Lanman

BackgroundNatural killer (NK) cells are part of the innate immune system, but are capable of participating in both innate and adaptive immune responses due to their wide range of cytolytic activities, from degranulation, secretion of cytokines to antibody-dependent cell-mediated cytotoxicity. These are possible due to the cells’ ability to recognize self and non-self-entities via the net signal generated from their activating and inhibitory receptors upon engagement. TIM-3 is a part of the NK receptor repertoire, expressed commonly on different lymphocytes. In T cells, TIM-3 is established as an inhibitory marker. However, in NK cells, the role of TIM-3 could be agonistic or antagonistic to NK cytotoxicity based on the disease type and activation status, though limited information is known about its role in cancer and its correlation to NK cell effector functions.MethodsWe measured TIM-3 expression upon activation of human NK cells under various conditions. NK cells were isolated from peripheral blood of healthy donors and expanded either in K562-based feeder media or feeder-free OpTmizerTM media. After expansion, they were co-cultured for 4 hours with patient-derived glioblastoma multiforme cells (GBM43) at effector:target ratios of 2.5:1 and 10:1. To evaluate the effect of TIM-3 expression on NK cells, 7AAD/CFSE killing assays, CD107a degranulation and IFNγ secretion assays were carried out while blocking TIM-3 with neutralizing antibodies. Bioinformatics analysis of GBM patient RNAseq data was carried out to correlate TIM-3 expression with in vivo function, and this analysis is supplemented by phenotyping TIM-3 on NK cells isolated from patient samples in order to infer the role of this receptor in GBM.ResultsWe found that TIM-3 was downregulated on OpTmizerTM -cultured NK cells once exposed to cancer targets, and this correlated to a decreased in NK killing capacity when compared to feeder media-cultured NK cells, where the downregulation was not observed. Culturing NK cells in different derivatives of both media suggested that a combination of serum and cytokines can induce TIM-3 expression change to cancer targets. Flow cytometric assays revealed that while degranulation remained the same, the decreased in cytotoxicity corresponded to a decrease in IFNγ secretion. In GBM patient datasets, TIM-3 expression correlates to high IFN-γ levels and associates with both pro- and anti-tumorigenic functions. Here, we report a new role of TIM-3 in modulating NK functionality by correlating its loss to a loss in NK cell effector functions, and how its expression can be modified by ex vivo activation.ConclusionsTIM-3 expression on NK cells can be induced by ex vivo expansion, and this change in expression could influence NK cytotoxicity and cytokine secretion. Our data suggested that TIM-3 is not necessarily an inhibitory marker in GBM, and more likely to be a status marker or an activation limiter, working in conjunction with other receptors to modulate NK cell anti-tumor responses.Ethics ApprovalThis study was approved by Purdue Intuition’s Ethics Board, approval number [1804020540].


Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1415 ◽  
Author(s):  
Eun-Young Kwon ◽  
Myung-Sook Choi

This study was to investigate the protective role of luteolin on inflammation-mediated metabolic diseases, focusing on the role of luteolin in the modulation of the Toll-like receptor (TLR) signaling pathway. C57BL/6J mice were fed a normal, high-fat, or high-fat + 0.005% (w/w) luteolin diet for 16 weeks. Luteolin improved chronic low-grade inflammation by modulating the TLR signaling pathway, resulting in reduced pro-inflammatory cytokines and macrophage accumulation. A positive relationship was detected between gene expressions of Tlr5, Map2k7, Mapk12, Mapk13, and Mapk9 and lipogenesis in epididymal white adipose tissue (eWAT) of luteolin-treated mice, which was linked to attenuation of hepatic lipotoxicity by increasing free fatty acid (FFA) flux to the WAT. Luteolin prevented fibrosis by decreasing extracellular matrix accumulation and cathepsin gene expressions, while enhancing the hepatic antioxidant system. Emr1 and Ccl7, important markers inducing low-grade inflammation, were affected by advanced age and greater body weight, which were normalized by luteolin treatment. Luteolin improved insulin resistance by normalizing pancreatic islet dysfunction and differentially modulating the plasma glucagon-like peptide-1 and gastric inhibitory polypeptide levels. Our results suggest that luteolin ameliorates diet-induced obesity and its comorbidities. Overall, this study provides novel insights into the effect of luteolin on the links among adiposopathy, insulin resistance, hepatic steatosis, and fibrosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Barbara Gierlikowska ◽  
Albert Stachura ◽  
Wojciech Gierlikowski ◽  
Urszula Demkow

Neutrophils are crucial elements of innate immune system, which assure host defense via a range of effector functions, such as phagocytosis, degranulation, and NET formation. The latest literature clearly indicates that modulation of effector functions of neutrophils may affect the treatment efficacy. Pharmacological modulation may affect molecular mechanisms activating or suppressing phagocytosis, degranulation or NET formation. In this review, we describe the role of neutrophils in physiology and in the course of bacterial and viral infections, illustrating the versatility and plasticity of those cells. This review also focus on the action of plant extracts, plant-derived compounds and synthetic drugs on effector functions of neutrophils. These recent advances in the knowledge can help to devise novel therapeutic approaches via pharmacological modulation of the described processes.


2021 ◽  
Author(s):  
Lingfeng Luo ◽  
Yishuai Zhang ◽  
Chia Hsu ◽  
Vyacheslav A Korshunov ◽  
Xiaochun Long ◽  
...  

Abstract Aims Intimal hyperplasia is a common feature of vascular remodeling disorders. Accumulation of synthetic smooth muscle cell (SMC)-like cells is the main underlying cause. Current therapeutic approaches including drug-eluting stents are not perfect due to the toxicity on endothelial cells and novel therapeutic strategies are needed. Our preliminary screening for dysregulated cyclic nucleotide phosphodiesterases (PDEs) in growing SMCs revealed the alteration of PDE10A expression. Herein, we investigated the function of PDE10A in SMC proliferation and intimal hyperplasia both in vitro and in vivo. Methods and results RT-qPCR, immunoblot, and in situ proximity ligation assay were performed to determine PDE10A expression in synthetic SMCs and injured vessels. We found that PDE10A mRNA and/or protein levels are up-regulated in cultured SMCs upon growth stimulation, as well as in intimal cells in injured mouse femoral arteries. To determine the cellular functions of PDE10A, we focused on its role in SMC proliferation. The anti-mitogenic effects of PDE10A on SMCs were evaluated via cell counting, BrdU incorporation, and flow cytometry. We found that PDE10A deficiency or inhibition arrested the SMC cell cycle at G1-phase with a reduction of cyclin D1. The anti-mitotic effect of PDE10A inhibition was dependent on cGMP-dependent protein kinase Iα (PKGIα), involving C-natriuretic peptide (CNP) and particulate guanylate cyclase natriuretic peptide receptor 2 (NPR2). In addition, the effects of genetic depletion and pharmacological inhibition of PDE10A on neointimal formation were examined in a mouse model of femoral artery wire injury. Both PDE10A knockout and inhibition decreased injury-induced intimal thickening in femoral arteries by at least 50%. Moreover, PDE10A inhibition decreased ex vivo remodeling of cultured human saphenous vein segments. Conclusions Our findings indicate that PDE10A contributes to SMC proliferation and intimal hyperplasia at least partially via antagonizing CNP/NPR2/cGMP/PKG1α signaling, and suggest that PDE10A may be a novel drug target for treating vascular occlusive disease. Translational perspective Coronary artery disease is currently the leading cause of death worldwide. SMCs are a major contributor to angioplasty restenosis, graft stenosis, and accelerated atherosclerosis. Current therapeutic approaches including drug-eluting stents targeting cell growth still have limitations. By combining studies on cultured SMCs in vitro, animal surgical models in vivo, and a human organ culture model ex vivo, we revealed an important role of PDE10A in modulating SMC proliferation and injury-induced intimal thickening. Given that PDE10A has been proven to be a safe drug target, its inhibition may represent a novel therapeutic strategy for vascular diseases associated with intimal hyperplasia.


2013 ◽  
Vol 147 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Virginie Tardif ◽  
Yulia Manenkova ◽  
Michael Berger ◽  
Kasper Hoebe ◽  
Jian-Ping Zuo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document