scholarly journals Sustained Id2 regulation of E proteins is required for terminal differentiation of effector CD8+ T cells

2018 ◽  
Vol 215 (3) ◽  
pp. 773-783 ◽  
Author(s):  
Kyla D. Omilusik ◽  
Marija S. Nadjsombati ◽  
Laura A. Shaw ◽  
Bingfei Yu ◽  
J. Justin Milner ◽  
...  

CD8+ T cells responding to infection differentiate into a heterogeneous population composed of progeny that are short-lived and participate in the immediate, acute response and those that provide long-lasting host protection. Although it is appreciated that distinct functional and phenotypic CD8+ T cell subsets persist, it is unclear whether there is plasticity among subsets and what mechanisms maintain subset-specific differences. Here, we show that continued Id2 regulation of E-protein activity is required to maintain the KLRG1hi CD8+ T cell population after lymphocytic choriomeningitis virus infection. Induced deletion of Id2 phenotypically and transcriptionally transformed the KLRG1hi “terminal” effector/effector-memory CD8+ T cell population into a KLRG1lo memory-like population, promoting a gene-expression program that resembled that of central memory T cells. Our results question the idea that KLRG1hi CD8+ T cells are necessarily terminally programmed and suggest that sustained regulation is required to maintain distinct CD8+ T cell states.

2022 ◽  
Vol 12 ◽  
Author(s):  
Yufei Mo ◽  
Kelvin Kai-Wang To ◽  
Runhong Zhou ◽  
Li Liu ◽  
Tianyu Cao ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in rapid T lymphocytopenia and functional impairment of T cells. The underlying mechanism, however, remains incompletely understood. In this study, we focused on characterizing the phenotype and kinetics of T-cell subsets with mitochondrial dysfunction (MD) by multicolor flow cytometry and investigating the association between MD and T-cell functionality. While 73.9% of study subjects displayed clinical lymphocytopenia upon hospital admission, a significant reduction of CD4 or CD8 T-cell frequency was found in all asymptomatic, symptomatic, and convalescent cases. CD4 and CD8 T cells with increased MD were found in both asymptomatic and symptomatic patients within the first week of symptom onset. Lower proportion of memory CD8 T cell with MD was found in severe patients than in mild ones at the stage of disease progression. Critically, the frequency of T cells with MD in symptomatic patients was preferentially associated with CD4 T-cell loss and CD8 T-cell hyperactivation, respectively. Patients bearing effector memory CD4 and CD8 T cells with the phenotype of high MD exhibited poorer T-cell responses upon either phorbol 12-myristate-13-acetate (PMA)/ionomycin or SARS-CoV-2 peptide stimulation than those with low MD. Our findings demonstrated an MD-associated mechanism underlying SARS-CoV-2-induced T lymphocytopenia and functional impairment during the acute phase of infection.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4352-4352
Author(s):  
Mohammad Raeiszadeh ◽  
Matthew Verney ◽  
Charles Craddock ◽  
Harald Wajant ◽  
Paul Moss ◽  
...  

Abstract Recent evidence suggests that Tumor Necrosis Factor (TNF) can selectively kill antigen-specific autoreactive CD8+ T-cells through engagement with TNF Receptor 2 (TNFR2) (1). Within the immune system, TNFR2 expression is restricted to subsets of T-cells, a profile which is in marked contrast to the ubiquitous pattern of expression of TNFR1. However, the spectrum and physiological significance of TNFR2 expression by CD8+ T-cell subpopulations is unknown. In this study we analysed the expression of TNFR2 by CD8 T-cell subsets isolated from normal healthy donors by flow cytometry. In addition, in order to understand the physiological significance of TNFR2 expression on recently activated T cells, we further studied expression on CMV-specific CD8 T-cells which expanded in stem cell transplant patients in response to episodes of CMV reactivation. The expression of TNFR2 was compared to that of other common gamma chain receptors including IL2R and IL7R, and to the expression of a receptor for inflammatory cytokine IL6. TNFR2 expression was found to increase during differentiation of CD8+ T cells. In particular, TNFR2 expression was seen on 6.5% of naïve, 14.6% of central memory, 37.9% of effector memory and 45.2% of CD45RA-revertant effector memory (TEMRA) CD8+ T cells. In contrast, common gamma chain cytokine receptor expression was skewed towards less differentiated T-cell subsets. For example, IL-7R was expressed by 63% of central memory populations but only 18.4% of the TEMRA subset. Comparable expression of IL2R was 12.1% on TCM and 2% on TEMRA. Of interest, IL-6 receptor expression was predominantly expressed by naïve CD8 T-cells (69.5%). In support of these results, we went on to show that expression of TNFR2 was inducible on primary T cells following activation with anti-CD3 and IL-2 in vitro. Healthy CMV seropositive donors had a larger median number of CD8+ T cells expressing TNFR2 (53%) in comparison to CMV seronegative donors (15%), (p<0.0001), consistent with the known accumulation of differentiated T-cells within CMV seropositive individuals.The expression of TNFR2 was then examined on CMV-specific CD8 T-cells which were undergoing acute expansion in response to viremia in six haemopoietic stem cell transplant patients. The expansion of CMV-specific CD8 T-cells was accompanied by an increase in the intensity of TNFR2 expression which later decreased during the retraction of antigen-specific T-cells during resolution of viremia. In order to explore the functional significance of TNFR2 expression, T-cells isolated from healthy donors were treated with recombinant TNFR2-specific ligand. This induced cell loss ranging from 13% to 60% of all CD8 T-cells in relation to untreated control cells, with selective depletion of the TNFR2+ population. A similar proportion of CMV-specific T-cells from transplant patients were eliminated by ex vivo stimulation of TNFR2. In conclusion our work shows that TNFR2 expression increases during differentiation of CD8+ T cells. In addition, we were able to utilize virus-specific T cells from SCT patients to show that expression is increased during the acute response to stimulation with antigen. We also provide evidence that TNFR2 activation can lead to the partial elimination of antigen-specific CMV-specific T-cells and it may thus play an important role in the ‘deflation’ of a pathogen-specific T-cell immune response following resolution of infection. These data suggest that TNFR2 expression may act as a ligand to signal activation-induced cell death in late differentiated populations of CD8+ T cells. Further investigations are required to assess the molecular pathways of TNFR2 signalling that are activated following receptor ligation in vivoand whether or not these are disrupted in disorders associated with chronic CD8+ T cell lymphproliferation. (1) L. Ban et al, PNAS 2008, 105: 3644 Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 117 (41) ◽  
pp. 25667-25678 ◽  
Author(s):  
J. Justin Milner ◽  
Hongtuyet Nguyen ◽  
Kyla Omilusik ◽  
Miguel Reina-Campos ◽  
Matthew Tsai ◽  
...  

Memory CD8 T cells provide durable protection against diverse intracellular pathogens and can be broadly segregated into distinct circulating and tissue-resident populations. Paradigmatic studies have demonstrated that circulating memory cells can be further divided into effector memory (Tem) and central memory (Tcm) populations based on discrete functional characteristics. Following resolution of infection, we identified a persisting antigen-specific CD8 T cell population that was terminally fated with potent effector function but maintained memory T cell qualities and conferred robust protection against reinfection. Notably, this terminally differentiated effector memory CD8 T cell population (terminal-Tem)was conflated within the conventional Tempopulation, prompting redefinition of the classical characteristics of Temcells. Murine terminal-Temwere transcriptionally, functionally, and developmentally unique compared to Temcells. Through mass cytometry and single-cell RNA sequencing (RNA-seq) analyses of human peripheral blood from healthy individuals, we also identified an analogous terminal-Tempopulation of CD8 T cells that was transcriptionally distinct from Temand Tcm. Key findings from this study show that parsing of terminal-Temfrom conventionally defined Temchallenge the reported characteristics of Tembiology, including enhanced presence in lymphoid tissues, robust IL-2 production, and recall potential, greater than expected homeostatic fitness, refined transcription factor dependencies, and a distinct molecular phenotype. Classification of terminal-Temand clarification of Tembiology hold broad implications for understanding the molecular regulation of memory cell states and harnessing immunological memory to improve immunotherapies.


2020 ◽  
Author(s):  
J. Justin Milner ◽  
Hongtuyet Nguyen ◽  
Kyla Omilusik ◽  
Miguel Reina-Campos ◽  
Matthew Tsai ◽  
...  

AbstractMemory CD8 T cells provide durable protection against diverse intracellular pathogens and can be broadly segregated into distinct circulating and tissue-resident populations. Paradigmatic studies have demonstrated circulating memory cells can be further divided into effector memory (Tem) and central memory (Tcm) populations based on discrete functional characteristics. Following resolution of infection, we identified a persisting antigen-specific CD8 T cell population that was simultaneously terminally-fated with potent effector function but maintained memory T cell qualities and conferred robust protection against reinfection. Notably, this terminally-differentiated effector memory CD8 T cell population (terminal-Tem) was conflated within the conventional Tem population, prompting redefinition of the classical characteristics of Tem cells. Murine terminal-Tem were transcriptionally, functionally, and developmentally unique compared to Tem cells. Through mass cytometry and single-cell RNAseq analyses of human peripheral blood from healthy individuals, we also identified an analogous terminal-Tem population of CD8 T cells that was transcriptionally distinct from Tem and Tcm. A key finding of this study was that parsing of terminal-Tem from conventionally defined Tem challenges classical characteristics of Tem biology, including enhanced presence in lymphoid tissues, robust IL-2 production and recall potential, greater than expected homeostatic fitness, refined transcription factor dependencies, and a distinct molecular phenotype. Classification of terminal-Tem and clarification of Tem biology hold broad implications for understanding the molecular regulation of memory cell states and harnessing immunological memory to improve immunotherapies.


2019 ◽  
Vol 5 (3) ◽  
pp. 63
Author(s):  
Alice Bayiyana ◽  
Samuel Okurut ◽  
Rose Nabatanzi ◽  
Godfrey Zziwa ◽  
David R. Boulware ◽  
...  

Despite improvement in the prognosis of HIV/AIDS (human immunodeficiency virus/acquired immune deficiency syndrome) patients on antiretroviral therapy (ART), cryptococcal meningitis (CM) still causes 10–15% mortality among HIV-infected patients. The immunological impact of ART on the CD4+ and CD8+ T cell repertoire during cryptococcal co-infection is unclear. We determined longitudinal phenotypic changes in T cell subsets among patients with CM after they initiated ART. We hypothesized that ART alters the clonotypic phenotype and structural composition of CD4+ and CD8+ T cells during CM co-infection. For this substudy, peripheral blood mononuclear cells (PBMC) were isolated at four time points from CM patients following ART initiation during the parent study (ClinicalTrials.gov number, NCT01075152). Phenotypic characterization of CD4+ and CD8+ T cells was done using T cell surface marker monoclonal antibodies by flow cytometry. There was variation in the expression of immunophenotypic markers defining central memory (CD27+CD45R0+), effector memory (CD45R0+CD27–), immune activation (CD38+ and Human Leucocyte Antigen DR (HLA-DR+), and exhaustion (Programmed cell death protein one (PD-1) in the CD4+ T cell subset. In comparison to the CD4+ T cell population, the CD8+ central memory subset declined gradually with minimal increase in the effector memory subset. Both CD4+ and CD8+ T cell immune exhaustion and activation markers remained elevated over 12 weeks. The relative surge and decline in the expression of T cell surface markers outlines a variation in the differentiation of CD4+ T cells during ART treatment during CM co-infection.


Blood ◽  
2004 ◽  
Vol 104 (12) ◽  
pp. 3463-3471 ◽  
Author(s):  
Christoph Hess ◽  
Terry K. Means ◽  
Patrick Autissier ◽  
Tonia Woodberry ◽  
Marcus Altfeld ◽  
...  

CD8 T cells play a key role in host defense against intracellular pathogens. Efficient migration of these cells into sites of infection is therefore intimately linked to their effector function. The molecular mechanisms that control CD8 T-cell trafficking into sites of infection and inflammation are not well understood, but the chemokine/chemokine receptor system is thought to orchestrate this process. Here we systematically examined the chemokine receptor profile expressed on human CD8 T cells. Surprisingly, we found that CXC chemokine receptor 1 (CXCR1), the predominant neutrophil chemokine receptor, defined a novel interleukin-8/CXC ligand 8 (IL-8/CXCL8)–responsive CD8 T-cell subset that was enriched in perforin, granzyme B, and interferon-γ (IFNγ), and had high cytotoxic potential. CXCR1 expression was down-regulated by antigen stimulation both in vitro and in vivo, suggesting antigen-dependent shaping of the migratory characteristics of CD8 T cells. On virus-specific CD8 T cells from persons with a history of Epstein-Barr virus (EBV) and influenza infection, CXCR1 expression was restricted to terminally differentiated effector memory cells. In HIV-1 infection, CXCR1-expressing HIV-1–specific CD8 T cells were present only in persons who were able to control HIV-1 replication during structured treatment interruptions. Thus, CXCR1 identifies a subset of CD8 T cells poised for immediate cytotoxicity and early recruitment into sites of innate immune system activation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258743
Author(s):  
Nathella Pavan Kumar ◽  
Chandrasekaran Padmapriyadarsini ◽  
Anuradha Rajamanickam ◽  
Perumal Kannabiran Bhavani ◽  
Arul Nancy ◽  
...  

BCG vaccination is known to induce innate immune memory, which confers protection against heterologous infections. However, the effect of BCG vaccination on the conventional adaptive immune cells subsets is not well characterized. We investigated the impact of BCG vaccination on the frequencies of T cell subsets and common gamma c (γc) cytokines in a group of healthy elderly individuals (age 60–80 years) at one month post vaccination as part of our clinical study to examine the effect of BCG on COVID-19. Our results demonstrate that BCG vaccination induced enhanced frequencies of central (p<0.0001) and effector memory (p<0.0001) CD4+ T cells and diminished frequencies of naïve (p<0.0001), transitional memory (p<0.0001), stem cell memory (p = 0.0001) CD4+ T cells and regulatory T cells. In addition, BCG vaccination induced enhanced frequencies of central (p = 0.0008), effector (p<0.0001) and terminal effector memory (p<0.0001) CD8+ T cells and diminished frequencies of naïve (p<0.0001), transitional memory (p<0.0001) and stem cell memory (p = 0.0034) CD8+T cells. BCG vaccination also induced enhanced plasma levels of IL-7 (p<0.0001) and IL-15 (p = 0.0020) but diminished levels of IL-2 (p = 0.0033) and IL-21 (p = 0.0020). Thus, BCG vaccination was associated with enhanced memory T cell subsets as well as memory enhancing γc cytokines in elderly individuals, suggesting its ability to induce non-specific adaptive immune responses.


2020 ◽  
Vol 11 ◽  
Author(s):  
Marie-Line Puiffe ◽  
Aurélie Dupont ◽  
Nouhoum Sako ◽  
Jérôme Gatineau ◽  
José L. Cohen ◽  
...  

IL4I1 is an immunoregulatory enzyme that inhibits CD8 T-cell proliferation in vitro and in the tumoral context. Here, we dissected the effect of IL4I1 on CD8 T-cell priming by studying the differentiation of a transgenic CD8 T-cell clone and the endogenous repertoire in a mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection. Unexpectedly, we show that IL4I1 accelerates the expansion of functional effector CD8 T cells during the first several days after infection and increases the average affinity of the elicited repertoire, supporting more efficient LCMV clearance in WT mice than IL4I1-deficient mice. Conversely, IL4I1 restrains the differentiation of CD8 T-cells into long-lived memory precursors and favors the memory response to the most immunodominant peptides. IL4I1 expression does not affect the phenotype or antigen-presenting functions of dendritic cells (DCs), but directly reduces the stability of T-DC immune synapses in vitro, thus dampening T-cell activation. Overall, our results support a model in which IL4I1 increases the threshold of T-cell activation, indirectly promoting the priming of high-affinity clones while limiting memory T-cell differentiation.


Blood ◽  
2012 ◽  
Vol 119 (21) ◽  
pp. 4928-4938 ◽  
Author(s):  
Patricia Ribeiro-dos-Santos ◽  
Emma L. Turnbull ◽  
Marta Monteiro ◽  
Agnès Legrand ◽  
Karen Conrod ◽  
...  

Abstract CD8 T cells lose the capacity to control HIV infection, but the extent of the impairment of CD8 T-cell functions and the mechanisms that underlie it remain controversial. Here we report an extensive ex vivo analysis of HIV-specific CD8 T cells, covering the expression of 16 different molecules involved in CD8 function or differentiation. This approach gave remarkably homogeneous readouts in different donors and showed that CD8 dysfunction in chronic HIV infection was much more severe than described previously: some Ifng transcription was observed, but most cells lost the expression of all cytolytic molecules and Eomesodermin and T-bet by chronic infection. These results reveal a cellular mechanism explaining the dysfunction of CD8 T cells during chronic HIV infection, as CD8 T cells are known to maintain some functionality when either of these transcription factors is present, but to lose all cytotoxic activity when both are not expressed. Surprisingly, they also show that chronic HIV and lymphocytic choriomeningitis virus infections have a very different impact on fundamental T-cell functions, “exhausted” lymphocytic choriomeningitis virus-specific cells losing the capacity to secrete IFN-γ but maintaining some cytotoxic activity as granzyme B and FasL are overexpressed and, while down-regulating T-bet, up-regulating Eomesodermin expression.


Blood ◽  
2009 ◽  
Vol 113 (21) ◽  
pp. 5134-5143 ◽  
Author(s):  
Stoyan Dimitrov ◽  
Christian Benedict ◽  
Dennis Heutling ◽  
Jürgen Westermann ◽  
Jan Born ◽  
...  

Abstract Pronounced circadian rhythms in numbers of circulating T cells reflect a systemic control of adaptive immunity whose mechanisms are obscure. Here, we show that circadian variations in T cell subpopulations in human blood are differentially regulated via release of cortisol and catecholamines. Within the CD4+ and CD8+ T cell subsets, naive cells show pronounced circadian rhythms with a daytime nadir, whereas (terminally differentiated) effector CD8+ T cell counts peak during daytime. Naive T cells were negatively correlated with cortisol rhythms, decreased after low-dose cortisol infusion, and showed highest expression of CXCR4, which was up-regulated by cortisol. Effector CD8+ T cells were positively correlated with epinephrine rhythms, increased after low-dose epinephrine infusion, and showed highest expression of β-adrenergic and fractalkine receptors (CX3CR1). Daytime increases in cortisol via CXCR4 probably act to redistribute naive T cells to bone marrow, whereas daytime increases in catecholamines via β-adrenoceptors and, possibly, a suppression of fractalkine signaling promote mobilization of effector CD8+ T cells from the marginal pool. Thus, activation of the major stress hormones during daytime favor immediate effector defense but diminish capabilities for initiating adaptive immune responses.


Sign in / Sign up

Export Citation Format

Share Document