scholarly journals Discovery of Salmonella trehalose phospholipids reveals functional convergence with mycobacteria

2019 ◽  
Vol 216 (4) ◽  
pp. 757-771 ◽  
Author(s):  
Peter Reinink ◽  
Jeffrey Buter ◽  
Vivek K. Mishra ◽  
Eri Ishikawa ◽  
Tan-Yun Cheng ◽  
...  

Salmonella species are among the world’s most prevalent pathogens. Because the cell wall interfaces with the host, we designed a lipidomics approach to reveal pathogen-specific cell wall compounds. Among the molecules differentially expressed between Salmonella Paratyphi and S. Typhi, we focused on lipids that are enriched in S. Typhi, because it causes typhoid fever. We discovered a previously unknown family of trehalose phospholipids, 6,6′-diphosphatidyltrehalose (diPT) and 6-phosphatidyltrehalose (PT). Cardiolipin synthase B (ClsB) is essential for PT and diPT but not for cardiolipin biosynthesis. Chemotyping outperformed clsB homology analysis in evaluating synthesis of diPT. DiPT is restricted to a subset of Gram-negative bacteria: large amounts are produced by S. Typhi, lower amounts by other pathogens, and variable amounts by Escherichia coli strains. DiPT activates Mincle, a macrophage activating receptor that also recognizes mycobacterial cord factor (6,6′-trehalose dimycolate). Thus, Gram-negative bacteria show convergent function with mycobacteria. Overall, we discovered a previously unknown immunostimulant that is selectively expressed among medically important bacterial species.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tsukasa Tominari ◽  
Ayumi Sanada ◽  
Ryota Ichimaru ◽  
Chiho Matsumoto ◽  
Michiko Hirata ◽  
...  

AbstractPeriodontitis is an inflammatory disease associated with severe alveolar bone loss and is dominantly induced by lipopolysaccharide from Gram-negative bacteria; however, the role of Gram-positive bacteria in periodontal bone resorption remains unclear. In this study, we examined the effects of lipoteichoic acid (LTA), a major cell-wall factor of Gram-positive bacteria, on the progression of inflammatory alveolar bone loss in a model of periodontitis. In coculture of mouse primary osteoblasts and bone marrow cells, LTA induced osteoclast differentiation in a dose-dependent manner. LTA enhanced the production of PGE2 accompanying the upregulation of the mRNA expression of mPGES-1, COX-2 and RANKL in osteoblasts. The addition of indomethacin effectively blocked the LTA-induced osteoclast differentiation by suppressing the production of PGE2. Using ex vivo organ cultures of mouse alveolar bone, we found that LTA induced alveolar bone resorption and that this was suppressed by indomethacin. In an experimental model of periodontitis, LTA was locally injected into the mouse lower gingiva, and we clearly detected alveolar bone destruction using 3D-μCT. We herein demonstrate a new concept indicating that Gram-positive bacteria in addition to Gram-negative bacteria are associated with the progression of periodontal bone loss.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Anthony S. Piro ◽  
Dulcemaria Hernandez ◽  
Sarah Luoma ◽  
Eric M. Feeley ◽  
Ryan Finethy ◽  
...  

ABSTRACT Dynamin-like guanylate binding proteins (GBPs) are gamma interferon (IFN-γ)-inducible host defense proteins that can associate with cytosol-invading bacterial pathogens. Mouse GBPs promote the lytic destruction of targeted bacteria in the host cell cytosol, but the antimicrobial function of human GBPs and the mechanism by which these proteins associate with cytosolic bacteria are poorly understood. Here, we demonstrate that human GBP1 is unique among the seven human GBP paralogs in its ability to associate with at least two cytosolic Gram-negative bacteria, Burkholderia thailandensis and Shigella flexneri. Rough lipopolysaccharide (LPS) mutants of S. flexneri colocalize with GBP1 less frequently than wild-type S. flexneri does, suggesting that host recognition of O antigen promotes GBP1 targeting to Gram-negative bacteria. The targeting of GBP1 to cytosolic bacteria, via a unique triple-arginine motif present in its C terminus, promotes the corecruitment of four additional GBP paralogs (GBP2, GBP3, GBP4, and GBP6). GBP1-decorated Shigella organisms replicate but fail to form actin tails, leading to their intracellular aggregation. Consequentially, the wild type but not the triple-arginine GBP1 mutant restricts S. flexneri cell-to-cell spread. Furthermore, human-adapted S. flexneri, through the action of one its secreted effectors, IpaH9.8, is more resistant to GBP1 targeting than the non-human-adapted bacillus B. thailandensis. These studies reveal that human GBP1 uniquely functions as an intracellular “glue trap,” inhibiting the cytosolic movement of normally actin-propelled Gram-negative bacteria. In response to this powerful human defense program, S. flexneri has evolved an effective counterdefense to restrict GBP1 recruitment. IMPORTANCE Several pathogenic bacterial species evolved to invade, reside in, and replicate inside the cytosol of their host cells. One adaptation common to most cytosolic bacterial pathogens is the ability to coopt the host’s actin polymerization machinery in order to generate force for intracellular movement. This actin-based motility enables Gram-negative bacteria, such as Shigella species, to propel themselves into neighboring cells, thereby spreading from host cell to host cell without exiting the intracellular environment. Here, we show that the human protein GBP1 acts as a cytosolic “glue trap,” capturing cytosolic Gram-negative bacteria through a unique protein motif and preventing disseminated infections in cell culture models. To escape from this GBP1-mediated host defense, Shigella employs a virulence factor that prevents or dislodges the association of GBP1 with cytosolic bacteria. Thus, therapeutic strategies to restore GBP1 binding to Shigella may lead to novel treatment options for shigellosis in the future. Several pathogenic bacterial species evolved to invade, reside in, and replicate inside the cytosol of their host cells. One adaptation common to most cytosolic bacterial pathogens is the ability to coopt the host’s actin polymerization machinery in order to generate force for intracellular movement. This actin-based motility enables Gram-negative bacteria, such as Shigella species, to propel themselves into neighboring cells, thereby spreading from host cell to host cell without exiting the intracellular environment. Here, we show that the human protein GBP1 acts as a cytosolic “glue trap,” capturing cytosolic Gram-negative bacteria through a unique protein motif and preventing disseminated infections in cell culture models. To escape from this GBP1-mediated host defense, Shigella employs a virulence factor that prevents or dislodges the association of GBP1 with cytosolic bacteria. Thus, therapeutic strategies to restore GBP1 binding to Shigella may lead to novel treatment options for shigellosis in the future.


2018 ◽  
Vol 10 (464) ◽  
pp. eaal0033 ◽  
Author(s):  
Ahsan R. Akram ◽  
Sunay V. Chankeshwara ◽  
Emma Scholefield ◽  
Tashfeen Aslam ◽  
Neil McDonald ◽  
...  

Respiratory infections in mechanically ventilated patients caused by Gram-negative bacteria are a major cause of morbidity. Rapid and unequivocal determination of the presence, localization, and abundance of bacteria is critical for positive resolution of the infections and could be used for patient stratification and for monitoring treatment efficacy. Here, we developed an in situ approach to visualize Gram-negative bacterial species and cellular infiltrates in distal human lungs in real time. We used optical endomicroscopy to visualize a water-soluble optical imaging probe based on the antimicrobial peptide polymyxin conjugated to an environmentally sensitive fluorophore. The probe was chemically stable and nontoxic and, after in-human intrapulmonary microdosing, enabled the specific detection of Gram-negative bacteria in distal human airways and alveoli within minutes. The results suggest that pulmonary molecular imaging using a topically administered fluorescent probe targeting bacterial lipid A is safe and practical, enabling rapid in situ identification of Gram-negative bacteria in humans.


2006 ◽  
Vol 73 (1) ◽  
pp. 156-163 ◽  
Author(s):  
Ashish A. Sawant ◽  
Narasimha V. Hegde ◽  
Beth A. Straley ◽  
Sarah C. Donaldson ◽  
Brenda C. Love ◽  
...  

ABSTRACT A study was conducted to understand the descriptive and molecular epidemiology of antimicrobial-resistant gram-negative enteric bacteria in the feces of healthy lactating dairy cattle. Gram-negative enteric bacteria resistant to ampicillin, florfenicol, spectinomycin, and tetracycline were isolated from the feces of 35, 8, 5, and 42% of 213 lactating cattle on 74, 39, 9, 26, and 82% of 23 farms surveyed, respectively. Antimicrobial-resistant gram-negative bacteria accounted for 5 (florfenicol) to 14% (tetracycline) of total gram-negative enteric microflora. Nine bacterial species were isolated, of which Escherichia coli (87%) was the most predominant species. MICs showing reduced susceptibility to ampicillin, ceftiofur, chloramphenicol, florfenicol, spectinomycin, streptomycin, and tetracycline were observed in E. coli isolates. Isolates exhibited resistance to ampicillin (48%), ceftiofur (11%), chloramphenicol (20%), florfenicol (78%), spectinomycin (18%), and tetracycline (93%). Multidrug resistance (≥3 to 6 antimicrobials) was seen in 40% of E. coli isolates from healthy lactating cattle. Of 113 tetracycline-resistant E. coli isolates, tet(B) was the predominant resistance determinant and was detected in 93% of isolates, while the remaining 7% isolates carried the tet(A) determinant. DNA-DNA hybridization assays revealed that tet determinants were located on the chromosome. Pulsed-field gel electrophoresis revealed that tetracycline-resistant E. coli isolates (n = 99 isolates) belonged to 60 subtypes, which is suggestive of a highly diverse population of tetracycline-resistant organisms. On most occasions, E. coli subtypes, although shared between cows within the herd, were confined mostly to a dairy herd. The findings of this study suggest that commensal enteric E. coli from healthy lactating cattle can be an important reservoir for tetracycline and perhaps other antimicrobial resistance determinants.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Romain Mercier ◽  
Yoshikazu Kawai ◽  
Jeff Errington

The peptidoglycan cell wall is a defining structural feature of the bacterial kingdom. Curiously, some bacteria have the ability to switch to a wall-free or ‘L-form’ state. Although known for decades, the general properties of L-forms are poorly understood, largely due to the lack of systematic analysis of L-forms in the molecular biology era. Here we show that inhibition of peptidoglycan precursor synthesis promotes the generation of L-forms from both Gram-positive and Gram-negative bacteria. We show that the L-forms generated have in common a mechanism of proliferation involving membrane blebbing and tubulation, which is dependent on an altered rate of membrane synthesis. Crucially, this mode of proliferation is independent of the essential FtsZ based division machinery. Our results suggest that the L-form mode of proliferation is conserved across the bacterial kingdom, reinforcing the idea that it could have been used in primitive cells, and opening up its use in the generation of synthetic cells.


2021 ◽  
Vol 118 (34) ◽  
pp. e2101952118
Author(s):  
Inokentijs Josts ◽  
Katharina Veith ◽  
Vincent Normant ◽  
Isabelle J. Schalk ◽  
Henning Tidow

Gram-negative bacteria take up the essential ion Fe3+ as ferric-siderophore complexes through their outer membrane using TonB-dependent transporters. However, the subsequent route through the inner membrane differs across many bacterial species and siderophore chemistries and is not understood in detail. Here, we report the crystal structure of the inner membrane protein FoxB (from Pseudomonas aeruginosa) that is involved in Fe-siderophore uptake. The structure revealed a fold with two tightly bound heme molecules. In combination with in vitro reduction assays and in vivo iron uptake studies, these results establish FoxB as an inner membrane reductase involved in the release of iron from ferrioxamine during Fe-siderophore uptake.


Author(s):  
David R. McNamara ◽  
Franklin R. Cockerill

Gram-negative bacteria may be rod-shaped (bacilli), spherical (cocci), oval, helical, or filamentous. Cytoplasmic membrane is surrounded by a cell wall consisting of a peptidoglycan layer and an outer cell membrane. Gram-negative bacteria are widely distributed in the natural environment. They are commensals with many animals and play a vital role in normal human physiology as intestinal commensals. Gram-negative bacteria are the cause of various human illnesses. The gram-negative bacterial cell wall contains various lipopolysaccharide endotoxins. Endotoxins trigger intense inflammation and the sepsis syndrome during infection. Specific species of gram-negative bacteria such as Neisseria meningitides, Moraxella catarrhalis, Acinetobacter, Vibrio, Klebsiella pneumonia, Salmonella, Pseudomonas aeruginosa, and Haemophilus influenza are reviewed.


Parasitology ◽  
2019 ◽  
Vol 147 (1) ◽  
pp. 29-38
Author(s):  
Rory Gough ◽  
Joel Barratt ◽  
Damien Stark ◽  
John Ellis

AbstractThe presence of bacterial DNA in Dientamoeba fragilis DNA extracts from culture poses a substantial challenge to sequencing the D. fragilis genome. However, elimination of bacteria from D. fragilis cultures has proven difficult in the past, presumably due to its dependence on some unknown prokaryote/s. This study explored options for removal of bacteria from D. fragilis cultures and for the generation of genome sequence data from D. fragilis. DNA was extracted from human faecal samples and xenic D. fragilis cultures. Extracts were subjected to 16S ribosomal DNA bacterial diversity profiling. Xenic D. fragilis cultures were then subject to antibiotic treatment regimens that systematically removed bacterial species depending on their membrane structure (Gram-positive or Gram-negative) and aerobic requirements. The impact of these treatments on cultures was assessed by 16S amplicon sequencing. Prior to antibiotic treatment, the cultures were dominated by Gram-negative bacteria. Addition of meropenem to cultures eliminated anaerobic Gram-negative bacteria, but it also led to protozoan death after 5 days incubation. The seeding of meropenem resistant Klebsiella pneumoniae strain KPC-2 into cultures before treatment by meropenem prevented death of D. fragilis cells beyond this 5 day period, suggesting that one or more species of Gram-negative bacteria may be an essential nutritional requirement for D. fragilis. Gram-positive cells were completely eliminated using vancomycin without affecting trophozoite growth. Finally, this study shows that genome sequencing of D. fragilis is feasible following bacterial elimination from cultures as the result of the major advances occurring in bioinformatics. We provide evidence on this fact by successfully sequencing the D. fragilis 28S large ribosomal DNA subunit gene using culture-derived DNA.


Sign in / Sign up

Export Citation Format

Share Document