scholarly journals Requirements for cDC2 positioning in blood-exposed regions of the neonatal and adult spleen

2020 ◽  
Vol 217 (11) ◽  
Author(s):  
Dan Liu ◽  
Jiaxi Wu ◽  
Jinping An ◽  
Jason G. Cyster

The marginal zone (MZ) of the spleen contains multiple cell types that are involved in mounting rapid immune responses against blood-borne pathogens, including conventional dendritic cells (cDCs) and MZ B cells. MZ B cells develop later than other B cell types and are sparse in neonatal mice. Here, we show that cDC2s are abundant in the MZ of neonatal compared with adult mice. We find that conditions associated with reduced MZ B cell numbers in adult mice cause increased cDC2 occupancy of the MZ. Treatment with the S1PR1-modulating drug, FTY720, causes cDC2 movement into the MZ through the indirect mechanism of displacing MZ B cells into follicles. Splenic cDC2s express high amounts of α4β1 and αLβ2 integrins and depend on these integrins and the adaptor Talin for their retention in blood-exposed regions of the spleen. Splenic CD4 T cell activation by particulate antigens is increased in mice with higher cDC2 density in the MZ, including in neonatal mice. Our work establishes requirements for homeostatic cDC2 positioning in the spleen and provides evidence that localization in blood-exposed regions around the white pulp augments cDC2 capture of particulate antigens. We suggest that MZ positioning of cDC2s partially compensates for the lack of MZ B cells during the neonatal period.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A744-A744
Author(s):  
Tingting Zhong ◽  
Zhaoliang Huang ◽  
Xinghua Pang ◽  
Na Chen ◽  
Xiaoping Jin ◽  
...  

BackgroundCD73 (ecto-5’-nucleotidase) is an ecto-nucleotidase that dephosphorylate AMP to form adenosine. Activation of adenosine signaling pathway in immune cells leads to the suppression of effector functions, down-regulate macrophage phagocytosis, inhibit pro-inflammatory cytokine release, as well as yield aberrantly differentiated dendritic cells producing pro-tumorigenic molecules.1 In the tumor microenvironment, adenosinergic negative feedback signaling facilitated immune suppression is considered an important mechanism for immune evasion of cancer cells.2 3 Combination of CD73 and anti-PD-1 antibody has shown promising activity in suppressing tumor growth. Hence, we developed AK119, an anti- human CD73 monoclonal antibody, and AK123,a bi-specific antibody targeting both PD-1 and CD73 for immune therapy of cancer.MethodsAK119 is a humanized antibody against CD73 and AK123 is a tetrameric bi-specific antibody targeting PD-1 and CD73. Binding assays of AK119 and AK123 to antigens, and antigen expressing cells were performed by using ELISA, Fortebio, and FACS assays. In-vitro assays to investigate the activity of AK119 and AK123 to inhibit CD73 enzymatic activity in modified CellTiter-Glo assay, to induce endocytosis of CD73, and to activate B cells were performed. Assay to evaluate AK123 activity on T cell activation were additionally performed. Moreover, the activities of AK119 and AK123 to mediate ADCC, CDC in CD73 expressing cells were also evaluated.ResultsAK119 and AK123 could bind to its respective soluble or membrane antigens expressing on PBMCs, MDA-MB-231, and U87-MG cells with high affinity. Results from cell-based assays indicated that AK119 and AK123 effectively inhibited nucleotidase enzyme activity of CD73, mediated endocytosis of CD73, and induced B cell activation by upregulating CD69 and CD83 expression on B cells, and showed more robust CD73 blocking and B cell activation activities compared to leading clinical candidate targeting CD73. AK123 could also block PD-1/PD-L1 interaction and enhance T cell activation.ConclusionsIn summary, AK119 and AK123 represent good preclinical biological properties, which support its further development as an anti-cancer immunotherapy or treating other diseases.ReferencesDeaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204:1257–65.Huang S, Apasov S, Koshiba M, Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood. 1997; 90:1600–10.Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I,Carbone DP, Feoktistov I, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 2008; 112:1822–31.


2021 ◽  
Vol 12 ◽  
Author(s):  
Arzoo M. Patel ◽  
Yuxin S. Liu ◽  
Scott P. Davies ◽  
Rachel M. Brown ◽  
Deirdre A. Kelly ◽  
...  

B lymphocytes are multitasking cells that direct the immune response by producing pro- or anti-inflammatory cytokines, by presenting processed antigen for T cell activation and co-stimulation, and by turning into antibody-secreting cells. These functions are important to control infection in the liver but can also exacerbate tissue damage and fibrosis as part of persistent inflammation that can lead to end stage disease requiring a transplant. In transplantation, immunosuppression increases the incidence of lymphoma and often this is of B cell origin. In this review we bring together information on liver B cell biology from different liver diseases, including alcohol-related and metabolic fatty liver disease, autoimmune hepatitis, primary biliary and primary sclerosing cholangitis, viral hepatitis and, in infants, biliary atresia. We also discuss the impact of B cell depletion therapy in the liver setting. Taken together, our analysis shows that B cells are important in the pathogenesis of liver diseases and that further research is necessary to fully characterise the human liver B cell compartment.


Blood ◽  
2009 ◽  
Vol 114 (21) ◽  
pp. 4703-4712 ◽  
Author(s):  
Jennifer L. Costantini ◽  
Samuel M. S. Cheung ◽  
Sen Hou ◽  
Hongzhao Li ◽  
Sam K. Kung ◽  
...  

Abstract Tandem pleckstrin homology domain proteins (TAPPs) are recruited to the plasma membrane via binding to phosphoinositides produced by phosphoinositide 3-kinases (PI3Ks). Whereas PI3Ks are critical for B-cell activation, the functions of TAPP proteins in B cells are unknown. We have identified 40 potential interaction partners of TAPP2 in B cells, including proteins involved in cytoskeletal rearrangement, signal transduction and endocytic trafficking. The association of TAPP2 with the cytoskeletal proteins utrophin and syntrophin was confirmed by Western blotting. We found that TAPP2, syntrophin, and utrophin are coexpressed in normal human B cells and B-chronic lymphocytic leukemia (B-CLL) cells. TAPP2 and syntrophin expression in B-CLL was variable from patient to patient, with significantly higher expression in the more aggressive disease subset identified by zeta-chain–associated protein kinase of 70 kDa (ZAP70) expression and unmutated immunoglobulin heavy chain (IgH) genes. We examined whether TAPP can regulate cell adhesion, a known function of utrophin/syntrophin in other cell types. Expression of membrane-targeted TAPP2 enhanced B-cell adhesion to fibronectin and laminin, whereas PH domain–mutant TAPP2 inhibited adhesion. siRNA knockdown of TAPP2 or utrophin, or treatment with PI3K inhibitors, significantly inhibited adhesion. These findings identify TAPP2 as a novel link between PI3K signaling and the cytoskeleton with potential relevance for leukemia progression.


Author(s):  
Thomas Dörner ◽  
Peter E. Lipsky

B cells have gained interest in rheumatoid arthritis (RA) beyond being the precursors of antibody-producing plasma cells since they are also a broader component of the adaptive immune system. They are capable of functioning as antigen-presenting cells for T-cell activation and can produce an array of cytokines. Disturbances of peripheral B-cell homeostasis together with the formation of ectopic lymphoid neogenesis within the inflamed synovium appears to be a characteristic of patients with RA. Enhanced generation of memory B cells and autoreactive plasma cells producing IgM-RF and ACPA-IgG antibodies together with formation of immune complexes contribute to the maintenance of RA, whereas treatment with B-cell-directed anti-CD20 and CLTA4-Ig therapy provides clinical benefit.


1994 ◽  
Vol 180 (2) ◽  
pp. 631-640 ◽  
Author(s):  
K S Hathcock ◽  
G Laszlo ◽  
C Pucillo ◽  
P Linsley ◽  
R J Hodes

Antigen-specific T cell activation requires the engagement of the T cell receptor (TCR) with antigen as well as the engagement of appropriate costimulatory molecules. The most extensively characterized pathway of costimulation has been that involving the interaction of CD28 and CTLA4 on the T cell with B7 (now termed B7-1) on antigen presenting cells. Recently, B7-2 a second costimulatory ligand for CTLA4, was described, demonstrating the potential complexity of costimulatory interactions. This report examines and compares the expression and function of B7-1 and B7-2. Overall these results indicate that (a) B7-1 and B7-2 can be expressed by multiple cell types, including B cells, T cells, macrophages, and dendritic cells, all of which are therefore candidate populations for delivering costimulatory signals mediated by these molecules; (b) stimulating B cells with either LPS or anti-IgD-dextran induced expression of both B7-1 and B7-2, and peak expression of both costimulatory molecules occurred after 18-42 h of culture. Expression of B7-2 on these B cell populations was significantly higher than expression of B7-1 at all times assayed after stimulation; (c) blocking of B7-2 costimulatory activity inhibited TCR-dependent T cell proliferation and cytokine production, without affecting early consequences of TCR signaling such as induction of CD69 or interleukin 2 receptor alpha (IL-2R alpha); and (d) expression of B7-1 and of B7-2 can be regulated by a variety of stimuli. Moreover, expression of B7-1 and B7-2 can be independently regulated by the same stimulus, providing an additional complexity in the mechanisms available for regulating costimulation and hence immune response.


2011 ◽  
Vol 07 (02) ◽  
pp. 130
Author(s):  
Mario Salvi ◽  
Guia Vannucchi ◽  
Paolo Beck-Peccoz ◽  
◽  
◽  
...  

The contribution of B-cells to human autoimmune disease has recently been underscored because of the therapeutic benefit of B-cell depleting therapies. B-cells are involved in the production of autoantibodies, and in CD4+ T-cell activation, control of T-cell function, and inflammation through cytokine production. B-cells are also important antigen-presenting cells. Rituximab (RTX) has been used off-label in various autoimmune disorders and has been shown to effectively deplete mature and memory CD20+ B-cells, but not long-lived plasma cells. The rationale behind the use of RTX in Graves’ disease (GD) and Graves’ orbitopathy (GO) relies on its putative effect on pathogenic autoantibodies causing hyperthyroidism. RTX in patients with active GO has been shown to have a significant effect on the inflammatory activity and severity of GO. However, caution is suggested before proposing RTX as a novel therapeutic tool in this disease until randomized controlled trials are available. Should preliminary observations be confirmed, an optimal strategy for controlling the progression of GO would be to pursue B-cell depletion shortly after diagnosis, rather than only as an alternative therapeutic option when standard immunosuppression has failed.


Blood ◽  
2006 ◽  
Vol 109 (2) ◽  
pp. 747-755 ◽  
Author(s):  
Michael G. Kharas ◽  
Isharat Yusuf ◽  
Vanessa M. Scarfone ◽  
Vincent W. Yang ◽  
Julia A. Segre ◽  
...  

Abstract Genes that are strongly repressed after B-cell activation are candidates for being inactivated, mutated, or repressed in B-cell malignancies. Krüppel-like factor 4 (Klf4), a gene down-regulated in activated murine B cells, is expressed at low levels in several types of human B-cell lineage lymphomas and leukemias. The human KLF4 gene has been identified as a tumor suppressor gene in colon and gastric cancer; in concordance with this, overexpression of KLF4 can suppress proliferation in several epithelial cell types. Here we investigate the effects of KLF4 on pro/pre–B-cell transformation by v-Abl and BCR-ABL, oncogenes that cause leukemia in mice and humans. We show that overexpression of KLF4 induces arrest and apoptosis in the G1 phase of the cell cycle. KLF4-mediated death, but not cell-cycle arrest, can be rescued by Bcl-XL overexpression. Transformed pro/pre-B cells expressing KLF4 display increased expression of p21CIP and decreased expression of c-Myc and cyclin D2. Tetracycline-inducible expression of KLF4 in B-cell progenitors of transgenic mice blocks transformation by BCR-ABL and depletes leukemic pre-B cells in vivo. Collectively, our work identifies KLF4 as a putative tumor suppressor in B-cell malignancies.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1053-1053
Author(s):  
Eliana Amati ◽  
Giulio Bassi ◽  
Mariano Di Trapani ◽  
Francesco Liotta ◽  
Francesco Annunziato ◽  
...  

Abstract Human bone marrow Mesenchymal Stromal Cells (MSC) are potent modulators of T cell activation and proliferation, mainly through the production of partially defined soluble factors, including the IFN-g-induced tryptophan-degrading enzyme IDO, a key immunosuppressive effector pathway. Actually, MSC may affect the functions of virtually all immune effector cells, including B cells. However, current literature concerning MSC immunomodulatory activity on B cells is still controversial, due to both biological peculiarities of B cells, which do not produce IFN-γ, a key MSC-triggering cytokine, and to different and poorly comparable experimental approaches. Human purified B cells, either resting or activated for 4 days with a stimulation cocktail (CD40 ligand + enhancer polyhistidine mAb MAB050 + rhIL-2 + mouse F(ab’)2 anti-human IgM/IgA/IgG + CpG oligodeoxynucleotide 2006) were co-cultured with MSC, either at resting conditions or following inflammatory priming (MSC pre-incubation with IFN-γ + TNF-α for 48 hours), or with MSC supernatants. CD27-positive (memory) and CD27-negative (naïve) B cell survival, proliferation, and intracellular activation status (through signaling network analysis by Phosphoflow) were assessed. Our results showed that MSC are normally supportive cells, not intrinsically capable of suppressing B cell proliferation, and require inflammatory priming to acquire B cell inhibitory potential. Inflammatory-primed MSC impair significantly activated B cell growth in a cell contact-independent manner, as supernatant is sufficient to provide maximal inhibition of B cell proliferation. B cell inhibition by MSC is not related to either induction of B cell apoptosis or early signaling events necessary for B cell activation. In addition, IDO pathway triggered in IFN-γ-primed MSC seems to have a role also in B cell inhibition by interfering with the tryptophan metabolism. Overall, B cell behavior following the interaction with MSC depends on the functional state of both B cells and MSC. The role of IDO in B cell regulation needs further investigation, as it may be relevant to develop new therapeutic approaches in pathological conditions related to B cell hyper-activation. Disclosures: No relevant conflicts of interest to declare.


1996 ◽  
Vol 183 (4) ◽  
pp. 1339-1344 ◽  
Author(s):  
J A Phillips ◽  
C G Romball ◽  
M V Hobbs ◽  
D N Ernst ◽  
L Shultz ◽  
...  

B cell knockout mice microMT/microMT were used to examine the requirement for B cell antigen (Ag) presentation in the establishment of CD4+ T cell tolerance. CD4+T cells from microMT mice injected with exogenous protein Ag in adjuvant responded to in vitro challenge by transcription of cytokine mRNA, cytokine secretion, and proliferation. Peripheral tolerance could be established in microMT mice with a single dose of deaggragated protein. This tolerance was manifested by a loss of T cell proliferation and cytokine production (including both T helper cell type 1 [Th1]- and Th2-related cytokines), indicating that B cells are not required for the induction of peripheral T cell tolerance and suggesting that the dual zone tolerance theory is not applicable to all protein Ags and is not mediated through Ag presentation by B cells.


Sign in / Sign up

Export Citation Format

Share Document