scholarly journals Chronic interleukin-1 exposure triggers selection for Cebpa-knockout multipotent hematopoietic progenitors

2021 ◽  
Vol 218 (6) ◽  
Author(s):  
Kelly C. Higa ◽  
Andrew Goodspeed ◽  
James S. Chavez ◽  
Marco De Dominici ◽  
Etienne Danis ◽  
...  

The early events that drive myeloid oncogenesis are not well understood. Most studies focus on the cell-intrinsic genetic changes and how they impact cell fate decisions. We consider how chronic exposure to the proinflammatory cytokine, interleukin-1β (IL-1β), impacts Cebpa-knockout hematopoietic stem and progenitor cells (HSPCs) in competitive settings. Surprisingly, we found that Cebpa loss did not confer a hematopoietic cell–intrinsic competitive advantage; rather chronic IL-1β exposure engendered potent selection for Cebpa loss. Chronic IL-1β augments myeloid lineage output by activating differentiation and repressing stem cell gene expression programs in a Cebpa-dependent manner. As a result, Cebpa-knockout HSPCs are resistant to the prodifferentiative effects of chronic IL-1β, and competitively expand. We further show that ectopic CEBPA expression reduces the fitness of established human acute myeloid leukemias, coinciding with increased differentiation. These findings have important implications for the earliest events that drive hematologic disorders, suggesting that chronic inflammation could be an important driver of leukemogenesis and a potential target for intervention.

2020 ◽  
Author(s):  
Kelly C. Higa ◽  
Andrew Goodspeed ◽  
James S. Chavez ◽  
Vadym Zaberezhnyy ◽  
Jennifer L. Rabe ◽  
...  

AbstractThe early events that drive hematologic disorders like clonal hematopoiesis, myelodysplastic syndrome, myeloproliferative neoplasm, and acute myeloid leukemia are not well understood. Most studies focus on the cell-intrinsic genetic changes that occur in these disorders and how they impact cell fate decisions. We consider how chronic exposure to the pro-inflammatory cytokine, interleukin-1β (IL-1β), impacts Cebpa-deficient hematopoietic stem and progenitor cells (HSPC) in competitive settings. We surprisingly found that Cebpa-deficient HSPC did not have a hematopoietic cell intrinsic competitive advantage; rather chronic IL-1β exposure engendered potent selection for Cebpa loss. Chronic IL-1β augments myeloid lineage output by activating differentiation and repressing stem cell gene expression programs in a Cebpa-dependent manner. As a result, Cebpa-deficient HSPC are resistant to the pro-differentiative effects of chronic IL-1β, and competitively expand. These findings have important implications for the earliest events that drive hematologic disorders, suggesting that chronic inflammation could be an important driver of leukemogenesis and a potential target for intervention.SummaryHiga et al. show that chronic interleukin-1β exposure primes hematopoietic stem and progenitor cells for myelopoiesis by upregulating myeloid differentiation programs and repressing stem gene programs in a Cebpa-dependent manner. Consequently, interleukin-1 potently selects for Cebpa loss in hematopoietic stem and progenitor cells.


2010 ◽  
Vol 18 (4) ◽  
pp. 675-685 ◽  
Author(s):  
Guoji Guo ◽  
Mikael Huss ◽  
Guo Qing Tong ◽  
Chaoyang Wang ◽  
Li Li Sun ◽  
...  

2008 ◽  
Vol 28 (21) ◽  
pp. 6668-6680 ◽  
Author(s):  
Albertus T. J. Wierenga ◽  
Edo Vellenga ◽  
Jan Jacob Schuringa

ABSTRACT The level of transcription factor activity critically regulates cell fate decisions, such as hematopoietic stem cell (HSC) self-renewal and differentiation. We introduced STAT5A transcriptional activity into human HSCs/progenitor cells in a dose-dependent manner by overexpression of a tamoxifen-inducible STAT5A(1*6)-estrogen receptor fusion protein. Induction of STAT5A activity in CD34+ cells resulted in impaired myelopoiesis and induction of erythropoiesis, which was most pronounced at the highest STAT5A transactivation levels. In contrast, intermediate STAT5A activity levels resulted in the most pronounced proliferative advantage of CD34+ cells. This coincided with increased cobblestone area-forming cell and long-term-culture-initiating cell frequencies, which were predominantly elevated at intermediate STAT5A activity levels but not at high STAT5A levels. Self-renewal of progenitors was addressed by serial replating of CFU, and only progenitors containing intermediate STAT5A activity levels contained self-renewal capacity. By extensive gene expression profiling we could identify gene expression patterns of STAT5 target genes that predominantly associated with a self-renewal and long-term expansion phenotype versus those that identified a predominant differentiation phenotype.


2021 ◽  
Vol 218 (10) ◽  
Author(s):  
Giovanni Cova ◽  
Chiara Taroni ◽  
Marie-Céline Deau ◽  
Qi Cai ◽  
Vincent Mittelheisser ◽  
...  

Our understanding of cell fate decisions in hematopoietic stem cells is incomplete. Here, we show that the transcription factor Helios is highly expressed in murine hematopoietic stem and progenitor cells (HSPCs), where it is required to suppress the separation of the platelet/megakaryocyte lineage from the HSPC pool. Helios acts mainly in quiescent cells, where it directly represses the megakaryocyte gene expression program in cells as early as the stem cell stage. Helios binding promotes chromatin compaction, notably at the regulatory regions of platelet-specific genes recognized by the Gata2 and Runx1 transcriptional activators, implicated in megakaryocyte priming. Helios null HSPCs are biased toward the megakaryocyte lineage at the expense of the lymphoid and partially resemble cells of aging animals. We propose that Helios acts as a guardian of HSPC pluripotency by continuously repressing the megakaryocyte fate, which in turn allows downstream lymphoid priming to take place. These results highlight the importance of negative and positive priming events in lineage commitment.


2020 ◽  
Author(s):  
Mengyi Song ◽  
Xuefei Yuan ◽  
Claudia Racioppi ◽  
Meaghan Leslie ◽  
Anastasiia Aleksandrova ◽  
...  

AbstractGATA4/5/6 transcription factors play essential, conserved roles in heart development. How these factors mediate the transition from multipotent mesoderm progenitors to a committed cardiac fate is unclear. To understand how GATA4/5/6 modulate cell fate decisions we labelled, isolated, and performed single-cell gene expression analysis on cells that express gata5 at pre-cardiac time points spanning gastrulation to somitogenesis. We found that most mesendoderm-derived lineages had dynamic gata5/6 expression. In the absence of Gata5/6, the population structure of mesendoderm-derived cells was dramatically altered. In addition to the expected absence of cardiac mesoderm, we observed a concomitant expansion of cranial-pharyngeal mesoderm. Functional genetic analyses in zebrafish and the invertebrate chordate Ciona, which possess a single GATA4/5/6 homolog, revealed an essential and cell-autonomous role for GATA4/5/6 in promoting cardiac and inhibiting pharyngeal mesoderm identity. Overall, the maintenance and repression of GATA4/5/6 activity plays a critical, evolutionarily conserved role in early development.


Blood ◽  
2017 ◽  
Vol 129 (15) ◽  
pp. 2083-2091 ◽  
Author(s):  
Roberto Avellino ◽  
Ruud Delwel

Abstract One of the most studied transcription factors in hematopoiesis is the leucine zipper CCAAT-enhancer binding protein α (C/EBPα), which is mainly involved in cell fate decisions for myeloid differentiation. Its involvement in acute myeloid leukemia (AML) is diverse, with patients frequently exhibiting mutations, deregulation of gene expression, or alterations in the function of C/EBPα. In this review, we emphasize the importance of C/EBPα for neutrophil maturation, its role in myeloid priming of hematopoietic stem and progenitor cells, and its indispensable requirement for AML development. We discuss that mutations in the open reading frame of CEBPA lead to an altered C/EBPα function, affecting the expression of downstream genes and consequently deregulating myelopoiesis. The emerging transcriptional mechanisms of CEBPA are discussed based on recent studies. Novel insights on how these mechanisms may be deregulated by oncoproteins or mutations/variants in CEBPA enhancers are suggested in principal to reveal novel mechanisms of how CEBPA is deregulated at the transcriptional level.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Virginia Guarani ◽  
Franck Dequiedt ◽  
Andreas M Zeiher ◽  
Stefanie Dimmeler ◽  
Michael Potente

The Notch signaling pathway is a versatile regulator of cell fate decisions and plays an essential role for embryonic and postnatal vascular development. As only modest differences in Notch pathway activity suffice to determine dramatic differences in blood vessel development, this pathway is tightly regulated by a variety of molecular mechanisms. Reversible acetylation has emerged as an important post-translational modification of several non-histone proteins, which are targeted by histone deacetylases (HDACs). Here, we report that specifically the Notch1 intracellular domain (NICD) is itself an acetylated protein and that its acetylation level is tightly regulated by the SIRT1 deacetylase, which we have previously identified as a key regulator of endothelial angiogenic functions during vascular growth. Coexpression of NICD with histone acetyltransferases such as p300 or PCAF induced a dose- and time-dependent acetylation of NICD. Blocking HDAC activity using the class III HDAC inhibitor nicotinamid (NAM), but not the class I/II HDAC inhibior trichostatin A, resulted in a significant increase of NICD acetylation suggesting that NICD is targetd by class III HDACs for deacetylation. Among the class III HDACs with deacetylase activity (SIRT1, 2, 3, 5), knock down of specifically SIRT1 resulted in enhanced acetylation of NICD. Moreover, wild type SIRT1, but not a catalytically inactive mutant catalyzed the deacetylation of NICD in a nicotinamid-dependent manner. SIRT1, but SIRT2, SIRT3 or SIRT5, associated with NICD through its catalytic domain demonstrating that SIRT1 is a direct NICD deacetylase. Enhancing NICD acetylation by either overexpression of p300 or inhibition of SIRT1 activity using NAM or RNAi-mediated knock down resulted in enhanced NICD protein stability by blocking its ubiquitin-mediated degradation. Consistent with these results, loss of SIRT1 amplified Notch target gene expression in endothelial cells in response to NICD overexpression or treatment with the Notch ligand Dll4. In summary, our results identify reversible acetylation of NICD as a novel molecular mechanism to control Notch signaling and suggest that deacetylation of NICD by SIRT1 plays a key role in the dynamic regulation of Notch signaling in endothelial cells.


Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. 2812-2821 ◽  
Author(s):  
Fabiana Perna ◽  
Nadia Gurvich ◽  
Ruben Hoya-Arias ◽  
Omar Abdel-Wahab ◽  
Ross L. Levine ◽  
...  

Abstract L3MBTL1, the human homolog of the Drosophila L(3)MBT polycomb group tumor suppressor gene, is located on chromosome 20q12, within the common deleted region identified in patients with 20q deletion-associated polycythemia vera, myelodysplastic syndrome, and acute myeloid leukemia. L3MBTL1 is expressed within hematopoietic CD34+ cells; thus, it may contribute to the pathogenesis of these disorders. To define its role in hematopoiesis, we knocked down L3MBTL1 expression in primary hematopoietic stem/progenitor (ie, CD34+) cells isolated from human cord blood (using short hairpin RNAs) and observed an enhanced commitment to and acceleration of erythroid differentiation. Consistent with this effect, overexpression of L3MBTL1 in primary hematopoietic CD34+ cells as well as in 20q− cell lines restricted erythroid differentiation. Furthermore, L3MBTL1 levels decrease during hemin-induced erythroid differentiation or erythropoietin exposure, suggesting a specific role for L3MBTL1 down-regulation in enforcing cell fate decisions toward the erythroid lineage. Indeed, L3MBTL1 knockdown enhanced the sensitivity of hematopoietic stem/progenitor cells to erythropoietin (Epo), with increased Epo-induced phosphorylation of STAT5, AKT, and MAPK as well as detectable phosphorylation in the absence of Epo. Our data suggest that haploinsufficiency of L3MBTL1 contributes to some (20q−) myeloproliferative neoplasms, especially polycythemia vera, by promoting erythroid differentiation.


2019 ◽  
Vol 97 (1) ◽  
pp. 10-20 ◽  
Author(s):  
Laura P.M.H. de Rooij ◽  
Derek C.H. Chan ◽  
Ava Keyvani Chahi ◽  
Kristin J. Hope

Normal hematopoiesis is sustained through a carefully orchestrated balance between hematopoietic stem cell (HSC) self-renewal and differentiation. The functional importance of this axis is underscored by the severity of disease phenotypes initiated by abnormal HSC function, including myelodysplastic syndromes and hematopoietic malignancies. Major advances in the understanding of transcriptional regulation of primitive hematopoietic cells have been achieved; however, the post-transcriptional regulatory layer that may impinge on their behavior remains underexplored by comparison. Key players at this level include RNA-binding proteins (RBPs), which execute precise and highly coordinated control of gene expression through modulation of RNA properties that include its splicing, polyadenylation, localization, degradation, or translation. With the recent identification of RBPs having essential roles in regulating proliferation and cell fate decisions in other systems, there has been an increasing appreciation of the importance of post-transcriptional control at the stem cell level. Here we discuss our current understanding of RBP-driven post-transcriptional regulation in HSCs, its implications for normal, perturbed, and malignant hematopoiesis, and the most recent technological innovations aimed at RBP–RNA network characterization at the systems level. Emerging evidence highlights RBP-driven control as an underappreciated feature of primitive hematopoiesis, the greater understanding of which has important clinical implications.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Cristina Bono ◽  
Alba Martínez ◽  
Javier Megías ◽  
Daniel Gozalbo ◽  
Alberto Yáñez ◽  
...  

ABSTRACT Toll-like receptor (TLR) agonists drive hematopoietic stem and progenitor cells (HSPCs) to differentiate along the myeloid lineage. In this study, we used an HSPC transplantation model to investigate the possible direct interaction of β-glucan and its receptor (dectin-1) on HSPCs in vivo. Purified HSPCs from bone marrow of B6Ly5.1 mice (CD45.1 alloantigen) were transplanted into dectin-1−/− mice (CD45.2 alloantigen), which were then injected with β-glucan (depleted zymosan). As recipient mouse cells do not recognize the dectin-1 agonist injected, interference by soluble mediators secreted by recipient cells is negligible. Transplanted HSPCs differentiated into macrophages in response to depleted zymosan in the spleens and bone marrow of recipient mice. Functionally, macrophages derived from HSPCs exposed to depleted zymosan in vivo produced higher levels of inflammatory cytokines (tumor necrosis factor alpha [TNF-α] and interleukin 6 [IL-6]). These results demonstrate that trained immune responses, already described for monocytes and macrophages, also take place in HSPCs. Using a similar in vivo model of HSPC transplantation, we demonstrated that inactivated yeasts of Candida albicans induce differentiation of HSPCs through a dectin-1- and MyD88-dependent pathway. Soluble factors produced following exposure of HSPCs to dectin-1 agonists acted in a paracrine manner to induce myeloid differentiation and to influence the function of macrophages derived from dectin-1-unresponsive or β-glucan-unexposed HSPCs. Finally, we demonstrated that an in vitro transient exposure of HSPCs to live C. albicans cells, prior to differentiation, is sufficient to induce a trained phenotype of the macrophages they produce in a dectin-1- and Toll-like receptor 2 (TLR2)-dependent manner. IMPORTANCE Invasive candidiasis is an increasingly frequent cause of serious and often fatal infections. Understanding host defense is essential to design novel therapeutic strategies to boost immune protection against Candida albicans. In this article, we delve into two new concepts that have arisen over the last years: (i) the delivery of myelopoiesis-inducing signals by microbial components directly sensed by hematopoietic stem and progenitor cells (HSPCs) and (ii) the concept of “trained innate immunity” that may also apply to HSPCs. We demonstrate that dectin-1 ligation in vivo activates HSPCs and induces their differentiation to trained macrophages by a cell-autonomous indirect mechanism. This points to new mechanisms by which pathogen detection by HSPCs may modulate hematopoiesis in real time to generate myeloid cells better prepared to deal with the infection. Manipulation of this process may help to boost the innate immune response during candidiasis.


Sign in / Sign up

Export Citation Format

Share Document