scholarly journals Playing dirty with virus transmission

2021 ◽  
Vol 219 (2) ◽  
Author(s):  
Christin Herrmann ◽  
Ken Cadwell

In this issue of JEM, Fay et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20211220) cohouse dirty pet store mice and rats with clean laboratory mice to gain insights into infection dynamics, discover new viruses, and identify relationships between viruses and the microbiome.

2021 ◽  
Vol 219 (2) ◽  
Author(s):  
Elizabeth J. Fay ◽  
Keir M. Balla ◽  
Shanley N. Roach ◽  
Frances K. Shepherd ◽  
Dira S. Putri ◽  
...  

Emerging viruses threaten global health, but few experimental models can characterize the virus and host factors necessary for within- and cross-species transmission. Here, we leverage a model whereby pet store mice or rats—which harbor natural rodent pathogens—are cohoused with laboratory mice. This “dirty” mouse model offers a platform for studying acute transmission of viruses between and within hosts via natural mechanisms. We identified numerous viruses and other microbial species that transmit to cohoused mice, including prospective new members of the Coronaviridae, Astroviridae, Picornaviridae, and Narnaviridae families, and uncovered pathogen interactions that promote or prevent virus transmission. We also evaluated transmission dynamics of murine astroviruses during transmission and spread within a new host. Finally, by cohousing our laboratory mice with the bedding of pet store rats, we identified cross-species transmission of a rat astrovirus. Overall, this model system allows for the analysis of transmission of natural rodent viruses and is a platform to further characterize barriers to zoonosis.


Parasitology ◽  
2020 ◽  
Vol 147 (12) ◽  
pp. 1344-1351
Author(s):  
Sarah G. H. Sapp ◽  
David A. Elsemore ◽  
Rita Hanna ◽  
Michael J. Yabsley

AbstractDomestic dogs can function as either paratenic or definitive hosts for the zoonotic raccoon roundworm Baylisascaris procyonis. However, factors leading to development of patent infections in dogs are under-studied. Here we compared infection dynamics of B. procyonis in dogs vs the natural raccoon host. Dogs and raccoons were inoculated 5000 or 500 B. procyonis eggs (n = 3 per dose) or were fed B. procyonis-infected laboratory mice (n = 3 per dose; mice inoculated with 1000 or 250 eggs). Fecal samples were analysed via flotation and a commercial coproantigen ELISA designed for detection of Toxocara spp. Two of 12 dogs (both received low dose larvae) developed patent infections; all 12 raccoons became infected with 10 developing patent infections. Compared with dogs, prepatent periods were shorter in raccoons and maximum egg outputs were much greater. Baylisascaris procyonis coproantigens were detectable via ELISA in all raccoons and the patently infected dogs. Finally, dogs spontaneously lost infections while all patently infected raccoons shed eggs until conclusion of the study. Our results demonstrate that dogs are clearly suboptimal hosts showing limited parasite establishment and fecundity vs raccoons. Despite the low competence, patently infected dogs still pose a risk for human exposure, emphasizing the importance of control measures.


Author(s):  
Andreas Schröder ◽  
Daniel Schanz ◽  
Johannes Bosbach ◽  
Matteo Novara ◽  
Reinhard Geisler ◽  
...  

Exhalation of small aerosol droplets and their transport, dispersion and (local) accumulation in closed rooms have been identified as the main pathway for indirect or airborne respiratory virus transmission from person to person, e.g. for SARS-CoV 2 or measles (Morawska and Cao 2020). Understanding airborne transport mechanisms of viruses via small bio-aerosol particles inside closed populated rooms is an important key factor for optimizing various mitigation strategies (Morawska et al. 2020), which can play an important role for damping the infection dynamics of any future and the ongoing present pandemic scenario, which unfortunately, is still threatening due to the spreading of several SARS-CoV2 variants of concern, e.g. delta (Kupferschmidt and Wadman 2021). Therefore, a large-scale 3D Lagrangian Particle Tracking experiment using up to 3 million long lived and nearly neutrally buoyant helium-filled soap bubbles (HFSB) with a mean diameter of ~ 370 µm as passive tracers in a 12 m³ generic test room has been performed, which allows to fully resolve the Lagrangian transport properties and flow field inside the whole room around a cyclically breathing thermal manikin (Lange et al. 2012) with and without mouth-nose-masks and shields applied. Six high-resolution CMOS streaming cameras, a large array of powerful pulsed LEDs have been used and the Shake-The-Box (STB) (Schanz et al. 2016) Lagrangian particle tracking algorithm has been applied in this experimental study of internal flows in order to gain insight into the complex transient and turbulent aerosol particle transport and dispersion processes around seated breathing persons.


2020 ◽  
Author(s):  
Dominik Wodarz ◽  
Natalia L. Komarova ◽  
Luis M. Schang

AbstractTransmission of SARS-CoV-2 appears especially effective in “hot zone” locations where individuals interact in close proximity. We present mathematical models describing two types of hot zones. First, we consider a metapopulation model of infection spread where transmission hot zones are explicitly described by independent demes in which the same people repeatedly interact (referred to as “static” hot zones, e.g. nursing homes, food processing plants, prisons, etc.). These are assumed to exists in addition to a “community at large” compartment in which virus transmission is less effective. This model yields a number of predictions that are relevant to interpreting epidemiological patterns in COVID19 data. Even if the rate of community virus spread is assumed to be relatively slow, outbreaks in hot zones can temporarily accelerate initial community virus growth, which can lead to an overestimation of the viral reproduction number in the general population. Further, the model suggests that hot zones are a reservoir enabling the prolonged persistence of the virus at “infection plateaus” following implementation of non-pharmaceutical interventions, which has been frequently observed in data. The second model considers “dynamic” hot zones, which can repeatedly form by drawing random individuals from the community, and subsequently dissolve (e.g. restaurants, bars, movie theaters). While dynamic hot zones can accelerate the average rate of community virus spread and can provide opportunities for targeted interventions, they do not predict the occurrence of infection plateaus or other atypical epidemiological dynamics. The models therefore identify two types of transmission hot zones with very different effects on the infection dynamics, which warrants further epidemiological investigations.


2016 ◽  
Vol 9 (1) ◽  
Author(s):  
Leon E. Hugo ◽  
Natalie A. Prow ◽  
Bing Tang ◽  
Greg Devine ◽  
Andreas Suhrbier

1992 ◽  
Vol 67 (01) ◽  
pp. 019-027 ◽  
Author(s):  
Joseph E Addiego ◽  
Edward Gomperts ◽  
Liu Shu-Len ◽  
Patricia Bailey ◽  
Suzanne G Courter ◽  
...  

SummaryTo reduce the risk of pathogenic virus transmission associated with the therapeutic administration of plasma-derived antihemophilic factor (FVIIIc), a process utilizing anti-FVIIIc immunoaffinity chromatography to isolate FVIIIc has been developed. In addition, the starting cryoprecipitate solution has been treated with an organic solvent/detergent mixture to inactivate lipid-enveloped viruses. A final ion exchange chromatography step is used to further remove contaminants, e.g., anti-FVIIIc antibody, potentially leached with FVIIIc during the immunoaffinity step. The purified FVTII is stabilized for lyophili-zation and storage by the addition of human albumin. The monoclonal anti-FVIIIc antibody used in the immunoaffinity step of the process is not detectable in the final preparation. Viral reduction studies performed at specific steps of the process demonstrate that 11 logs of human immunodeficiency virus (HIV) and greater than 4-5 logs of other lipid-enveloped viruses are inactivated within the first 30 s of exposure to the solvent/ detergent mixture and 4-5 logs of various model viruses, e. g. Endomyocarditis virus (EMC), are physically removed during washing of the immunoaffinity column. The lyophilized product is reconstituted using sterile water in a matter of seconds.The pharmacokinetics of Hemofil® M were compared to those obtained using a standard heat-treated concentrate (Hemofil® CT) in five severe factor VIII deficient hemophiliacs in a randomized, cross-over study. No statistically significant differences were observed in mean half life (p >0.6) or median recovery (p = 0.4) between the two preparations. No clinically significant adverse effects were observed in patients receiving either FVIII preparation.In addition, 43 patients at 18 different centers underwent pharmacokinetic studies, with a nominal dose of 50 u/kg FVIIIc Hemofil® M. The mean recovery was 103.6%, and the t 1/2 was 14.6 h. The recovery of FVIII in this group was as expected, providing an increase of assayed FVIII of approximately 2% per unit of FVTII/kg infused.Clinical trials using Hemofil® M have been initiated in 124 hemophilia A patients. The safety and efficacy of Hemofil® M has been established. To date, 0 of 60 patients tested have seroconverted to HIV. None of the previously untreated patients show clinical or laboratory evidence of Non-A, Non-B hepatitis (NANB), with 21 patients remaining negative as far as presence of antibodies to the Hepatitis C virus (a-HCV negative) at least 6 months after the initial infusion. There is no evidence of neoantigenicity, evidenced by seroconversion to murine antibody. An 8.7% (2 of 23) prevalence of anti-FVIIIc inhibitor development has been observed in previously untreated patients with FVIIIc⩽3%, receiving only the monoclonally purified solvent/ detergent treated FVIII concentrate while on study and on poststudy surveillance. All patients demonstrated clinical hemostasis following product use for either on demand bleeding or surgical prophylaxis.


2017 ◽  
Vol 127 (1) ◽  
pp. 29-40 ◽  
Author(s):  
I de Buron ◽  
KM Hill-Spanik ◽  
L Haselden ◽  
SD Atkinson ◽  
SL Hallett ◽  
...  

Author(s):  
Wanderson Kleber de Oliveira ◽  
Juan Cortez-Escalante ◽  
Wanessa Tenório Gonçalves Holanda De Oliveira ◽  
Greice Madeleine Ikeda do Carmo ◽  
Cláudio Maierovitch Pessanha Henriques ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document