scholarly journals Plasticity in canine airway smooth muscle.

1995 ◽  
Vol 105 (1) ◽  
pp. 73-94 ◽  
Author(s):  
V R Pratusevich ◽  
C Y Seow ◽  
L E Ford

The large volume changes of some hollow viscera require a greater length range for the smooth muscle of their walls than can be accommodated by a fixed array of sliding filaments. A possible explanation is that smooth muscles adapt to length changes by forming variable numbers of contractile units in series. To test for such plasticity we examined the muscle length dependence of shortening velocity and compliance, both of which will vary directly with the number of thick filaments in series. Dog tracheal smooth muscle was studied because its cells are arrayed in long, straight, parallel bundles that span the length of the preparation. In experiments where muscle length was changed, both compliance and velocity showed a strong dependence on muscle length, varying by 1.7-fold and 2.2-fold, respectively, over a threefold range of length. The variation in isometric force was substantially less, ranging from a 1.2- to 1.3-fold in two series of experiments where length was varied by twofold to an insignificant 4% variation in a third series where a threefold length range was studied. Tetanic force was below its steady level after both stretches and releases, and increased to a steady level with 5-6 tetani at 5 min intervals. These results suggest strongly that the number of contractile units in series varies directly with the adapted muscle length. Temporary force depression after a length change would occur if the change transiently moved the filaments from their optimum overlap. The relative length independence of the adapted force is explained by the reforming of the filament lattice to produce optimum force development, with commensurate changes of velocity and compliance.

2009 ◽  
Vol 297 (2) ◽  
pp. L362-L372 ◽  
Author(s):  
J. H. T. Bates ◽  
S. R. Bullimore ◽  
A. Z. Politi ◽  
J. Sneyd ◽  
R. C. Anafi ◽  
...  

Airway smooth muscle (ASM) is cyclically stretched during breathing, even in the active state, yet the factors determining its dynamic force-length behavior remain incompletely understood. We developed a model of the activated ASM strip and compared its behavior to that observed in strips of rat trachealis muscle stimulated with methacholine. The model consists of a nonlinear viscoelastic element (Kelvin body) in series with a force generator obeying the Hill force-velocity relationship. Isometric force in the model is proportional to the number of bound crossbridges, the attachment of which follows first-order kinetics. Crossbridges detach at a rate proportional to the rate of change of muscle length. The model accurately accounts for the experimentally observed transient and steady-state oscillatory force-length behavior of both passive and activated ASM. However, the model does not predict the sustained decrement in isometric force seen when activated strips of ASM are subjected briefly to large stretches. We speculate that this force decrement reflects some mechanism unrelated to the cycling of crossbridges, and which may be involved in the reversal of bronchoconstriction induced by a deep inflation of the lungs in vivo.


2001 ◽  
Vol 90 (5) ◽  
pp. 1811-1816 ◽  
Author(s):  
Kuo-Hsing Kuo ◽  
Lu Wang ◽  
Peter D. Paré ◽  
Lincoln E. Ford ◽  
Chun Y. Seow

Airway smooth muscle adapts to different lengths with functional changes that suggest plastic alterations in the filament lattice. To look for structural changes that might be associated with this plasticity, we studied the relationship between isometric force generation and myosin thick filament density in cell cross sections, measured by electron microscope, after length oscillations applied to the relaxed porcine trachealis muscle. Muscles were stimulated regularly for 12 s every 5 min. Between two stimulations, the muscles were submitted to repeated passive ±30% length changes. This caused tetanic force and thick-filament density to fall by 21 and 27%, respectively. However, in subsequent tetani, both force and filament density recovered to preoscillation levels. These findings indicate that thick filaments in airway smooth muscle are labile, depolymerization of the myosin filaments can be induced by mechanical strain, and repolymerization of the thick filaments underlies force recovery after the oscillation. This thick-filament lability would greatly facilitate plastic changes of lattice length and explain why airway smooth muscle is able to function over a large length range.


1982 ◽  
Vol 242 (3) ◽  
pp. C146-C158 ◽  
Author(s):  
R. A. Meiss

Controlled length changes were imposed on mesotubarium superius and ovarian ligament smooth muscles from the reproductive tracts of female rabbits in constant estrus. Stretches of up to 35% of the muscle length were applied during isometric contraction, relaxation, and steady-state force levels. Force was continuously monitored and was plotted as a function of length. During constant velocity stretches there was an initial steep rise in force, a rapid downward deviation from the initial slope, and a long region with a constant upward slope. Stretches made during contraction showed smaller initial rises in force and steeper linear portions than did identical comparison stretches made during relaxation. The value of the slope was independent of the prior developed force, but it did depend on whether the muscle was contracting or relaxing. During contraction and steady-state force levels, the slope was independent of the stretch rate, but it was strongly rate dependent during relaxation. Changes in the stretch rate during stretch caused associated changes in muscle force; the relationship was curvilinear and was exaggerated during relaxation. The findings are placed in the context of a sliding-filament--cross-bridge hypothesis.


1983 ◽  
Vol 55 (3) ◽  
pp. 759-769 ◽  
Author(s):  
S. J. Gunst

Strips of tonically contracted canine tracheal and bronchial airway smooth muscles (AWSM) were studied in vitro to compare dynamic muscle force during stretch-retraction cycles with static isometric muscle force at various length points within the cycling range. At any particular rate, a characteristic force-length loop was obtained by cycling over a given range of lengths. Dynamic muscle force dropped well below static isometric muscle force at lengths short of the peak length at all rates of cycling. When stretch or retraction of the muscle was stopped at any point along either path of the cycle, muscle force rose to approach the isometric force at that length. Dynamic force at the peak length of the cycle remained close to, or slightly greater than, the static isometric force. The results suggest that the velocity of shortening of tonically contracted AWSM is very slow relative to the rates of cycling employed. A slow rate of shortening of AWSM relative to the rate of change in airway caliber during breathing could account for well-known effects of volume history on airway tone.


1990 ◽  
Vol 68 (1) ◽  
pp. 209-219 ◽  
Author(s):  
M. Okazawa ◽  
P. Pare ◽  
J. Road

We applied the technique of sonomicrometry to directly measure length changes of the trachealis muscle in vivo. Pairs of small 1-mm piezoelectric transducers were placed in parallel with the muscle fibers in the posterior tracheal wall in seven anesthetized dogs. Length changes were recorded during mechanical ventilation and during complete pressure-volume curves of the lung. The trachealis muscle showed spontaneous fluctuations in base-line length that disappeared after vagotomy. Before vagotomy passive pressure-length curves showed marked hysteresis and length changed by 18.5 +/- 13.2% (SD) resting length at functional residual capacity (LFRC) from FRC to total lung capacity (TLC) and by 28.2 +/- 16.2% LFRC from FRC to residual volume (RV). After vagotomy hysteresis decreased considerably and length now changed by 10.4 +/- 3.7% LFRC from FRC to TLC and by 32.5 +/- 14.6% LFRC from FRC to RV. Bilateral supramaximal vagal stimulation produced a mean maximal active shortening of 28.8 +/- 14.2% resting length at any lung volume (LR) and shortening decreased at lengths above FRC. The mean maximal velocity of shortening was 4.2 +/- 3.9% LR.S-1. We conclude that sonomicrometry may be used to record smooth muscle length in vivo. Vagal tone strongly influences passive length change. In vivo active shortening and velocity of shortening are less than in vitro, implying that there are significant loads impeding shortening in vivo.


1956 ◽  
Vol 185 (2) ◽  
pp. 302-308 ◽  
Author(s):  
J. W. Remington ◽  
R. S. Alexander

Isolated specimens of rabbit gut or bladder were subjected to fixed loads, length changes being recorded kymographically. The elongation curves showed two essential phases. First there was a rapid visco-elastic extension whose amount was directly related to load. Second, there was a sustained creep whose slope was less clearly dependent upon load. This creep appeared not to develop until a critical load value was exceeded. A stretch reduced the viscosity, as reflected in the initial extension of a succeeding stretch. This change could be reversed with long recovery intervals allowed after load removal. Load removal was followed by a brief viscoelastic recoil, and then a long term length retraction which had the same slope regardless of the amount of prior extension. The recoil was always less in amount than the previous visco-elastic extension. The recovery of the initial viscosity, with time, could not be related to the recovery in length. While acetylcholine or epinephrine could change the tissue length, they had no clear effect upon the amount or rate of initial extension, upon the late creep, or upon the late length retraction upon load release. The contractile elements of the muscle would seem to be in series with visco-elastic elements, and the elongation pattern of the latter dominantly controls the over-all tissue extensibility. Only in a few cases can the tissue extensibility be related to the amount of muscle contraction.


1998 ◽  
Vol 275 (6) ◽  
pp. L1026-L1030 ◽  
Author(s):  
Martin Bard ◽  
Sergio Salmeron ◽  
Catherine Coirault ◽  
Francois-Xavier Blanc ◽  
Yves Lecarpentier

In the guinea pig, tracheal smooth muscle (TSM) exhibits intrinsic tone (IT). The active nature of IT suggests that it could be influenced by muscle length and load. In the guinea pig, IT is entirely suppressed by the cyclooxygenase inhibitor indomethacin. IT could be measured as the difference between resting tone before and after indomethacin addition. We examined, in electrically stimulated TSM strips ( n= 9), the influence of initial muscle length ( L i) on IT, the relationship between IT and the maximum extent of relaxation (ΔF1), and the influence of indomethacin on active isometric force. When L i decreased from 100 to 75% of optimal L i, there was a significant decrease in IT (from 12.0 ± 0.2 to 5.3 ± 0.1 mN; P < 0.001). Over the range of L i studied, ΔF1 underestimated the amount of IT, but there was a close linear relationship between ΔF1 and IT ( r = 0.9). Compared with the basal state, indomethacin increased active isometric force (from 9.5 ± 1.0 to 19.7 ± 2.0 mN at optimal L i; P < 0.001) and induced its length dependency. In guinea pig TSM, L i was an important determinant of IT.


2005 ◽  
Vol 83 (10) ◽  
pp. 825-831 ◽  
Author(s):  
Farah Ali ◽  
Peter D Paré ◽  
Chun Y Seow

It is believed that the contractile filaments in smooth muscle are organized into arrays of contractile units (similar to the sarcomeric structure in striated muscle), and that such an organization is crucial for transforming the mechanical activities of actomyosin interaction into cell shortening and force generation. Details of the filament organization, however, are still poorly understood. Several models of contractile filament architecture are discussed here. To account for the linear relationship observed between the force generated by a smooth muscle and the muscle length at the plateau of an isotonic contraction, a model of contractile unit is proposed. The model consists of 2 dense bodies with actin (thin) filaments attached, and a myosin (thick) filament lying between the parallel thin filaments. In addition, the thick filament is assumed to span the whole contractile unit length, from dense body to dense body, so that when the contractile unit shortens, the amount of overlap between the thick and thin filaments (i.e., the distance between the dense bodies) decreases in exact proportion to the amount of shortening. Assembly of the contractile units into functional contractile apparatus is assumed to involve a group of cells that form a mechanical syncytium. The contractile apparatus is assumed malleable in that the number of contractile units in series and in parallel can be altered to accommodate strains on the muscle and to maintain the muscle's optimal mechanical function.Key words: contraction model, ultrastructure, length adaptation, plasticity.


2005 ◽  
Vol 98 (2) ◽  
pp. 489-497 ◽  
Author(s):  
M. L. Dowell ◽  
O. J. Lakser ◽  
W. T. Gerthoffer ◽  
J. J. Fredberg ◽  
G. L. Stelmack ◽  
...  

We hypothesized that differences in actin filament length could influence force fluctuation-induced relengthening (FFIR) of contracted airway smooth muscle and tested this hypothesis as follows. One-hundred micromolar ACh-stimulated canine tracheal smooth muscle (TSM) strips set at optimal reference length ( Lref) were allowed to shorten against 32% maximal isometric force (Fmax) steady preload, after which force oscillations of ±16% Fmax were superimposed. Strips relengthened during force oscillations. We measured hysteresivity and calculated FFIR as the difference between muscle length before and after 20-min imposed force oscillations. Strips were relaxed by ACh removal and treated for 1 h with 30 nM latrunculin B (sequesters G-actin and promotes depolymerization) or 500 nM jasplakinolide (stabilizes actin filaments and opposes depolymerization). A second isotonic contraction protocol was then performed; FFIR and hysteresivity were again measured. Latrunculin B increased FFIR by 92.2 ± 27.6% Lref and hysteresivity by 31.8 ± 13.5% vs. pretreatment values. In contrast, jasplakinolide had little influence on relengthening by itself; neither FFIR nor hysteresivity was significantly affected. However, when jasplakinolide-treated tissues were then incubated with latrunculin B in the continued presence of jasplakinolide for 1 more h and a third contraction protocol performed, latrunculin B no longer substantially enhanced TSM relengthening. In TSM treated with latrunculin B + jasplakinolide, FFIR increased by only 3.03 ± 5.2% Lref and hysteresivity by 4.14 ± 4.9% compared with its first (pre-jasplakinolide or latrunculin B) value. These results suggest that actin filament length, in part, determines the relengthening of contracted airway smooth muscle.


2000 ◽  
Vol 88 (6) ◽  
pp. 2246-2250 ◽  
Author(s):  
Lu Wang ◽  
Peter D. Paré ◽  
Chun Y. Seow

It has been shown that deep inspiration (DI) taken before application of bronchoconstricting stimuli causes a reduction in the subsequent bronchoconstriction; a fast DI has a greater inhibitory effect than a slow DI. We hypothesize that periodic length changes imposed on a relaxed airway smooth muscle (ASM) would attenuate subsequent bronchoconstriction by disrupting the organization of the contractile apparatus, and this could be an important mechanism for the observed bronchoprotective effect of DI and tidal breathing. Length oscillations of different amplitude, frequency, and duration were applied to a relaxed muscle. The effects of such perturbations on force development were then assessed. Results show that oscillations reduce the subsequent force generation and that the magnitude of force reduction is proportional to amplitude and duration of the length oscillation. After the oscillation, isometric force recovered to the preoscillation level in a series of isometric contractions, and the rate of recovery was facilitated by frequent stimulation. The in vitro behavior of ASM found in this study could account for the observed temporary reduction in bronchoconstriction subsequent to a DI.


Sign in / Sign up

Export Citation Format

Share Document