scholarly journals Selectivity filter gating in large-conductance Ca2+-activated K+ channels

2012 ◽  
Vol 139 (3) ◽  
pp. 235-244 ◽  
Author(s):  
Jill Thompson ◽  
Ted Begenisich

Membrane voltage controls the passage of ions through voltage-gated K (Kv) channels, and many studies have demonstrated that this is accomplished by a physical gate located at the cytoplasmic end of the pore. Critical to this determination were the findings that quaternary ammonium ions and certain peptides have access to their internal pore-blocking sites only when the channel gates are open, and that large blocking ions interfere with channel closing. Although an intracellular location for the physical gate of Kv channels is well established, it is not clear if such a cytoplasmic gate exists in all K+ channels. Some studies on large-conductance, voltage- and Ca2+-activated K+ (BK) channels suggest a cytoplasmic location for the gate, but other findings question this conclusion and, instead, support the concept that BK channels are gated by the pore selectivity filter. If the BK channel is gated by the selectivity filter, the interactions between the blocking ions and channel gating should be influenced by the permeant ion. Thus, we tested tetrabutyl ammonium (TBA) and the Shaker “ball” peptide (BP) on BK channels with either K+ or Rb+ as the permeant ion. When tested in K+ solutions, both TBA and the BP acted as open-channel blockers of BK channels, and the BP interfered with channel closing. In contrast, when Rb+ replaced K+ as the permeant ion, TBA and the BP blocked both closed and open BK channels, and the BP no longer interfered with channel closing. We also tested the cytoplasmically gated Shaker K channels and found the opposite behavior: the interactions of TBA and the BP with these Kv channels were independent of the permeant ion. Our results add significantly to the evidence against a cytoplasmic gate in BK channels and represent a positive test for selectivity filter gating.

2006 ◽  
Vol 128 (4) ◽  
pp. 423-441 ◽  
Author(s):  
Weiyan Li ◽  
Richard W. Aldrich

Crystal structures of potassium channels have strongly corroborated an earlier hypothetical picture based on functional studies, in which the channel gate was located on the cytoplasmic side of the pore. However, accessibility studies on several types of ligand-sensitive K+ channels have suggested that their activation gates may be located near or within the selectivity filter instead. It remains to be determined to what extent the physical location of the gate is conserved across the large K+ channel family. Direct evidence about the location of the gate in large conductance calcium-activated K+ (BK) channels, which are gated by both voltage and ligand (calcium), has been scarce. Our earlier kinetic measurements of the block of BK channels by internal quaternary ammonium ions have raised the possibility that they may lack a cytoplasmic gate. We show in this study that a synthesized Shaker ball peptide (ShBP) homologue acts as a state-dependent blocker for BK channels when applied internally, suggesting a widening at the intracellular end of the channel pore upon gating. This is consistent with a gating-related conformational change at the cytoplasmic end of the pore-lining helices, as suggested by previous functional and structural studies on other K+ channels. Furthermore, our results from two BK channel mutations demonstrate that similar types of interactions between ball peptides and channels are shared by BK and other K+ channel types.


2006 ◽  
Vol 127 (3) ◽  
pp. 309-328 ◽  
Author(s):  
Zhongming Ma ◽  
Xing Jian Lou ◽  
Frank T. Horrigan

The activation of large conductance Ca2+-activated (BK) potassium channels is weakly voltage dependent compared to Shaker and other voltage-gated K+ (KV) channels. Yet BK and KV channels share many conserved charged residues in transmembrane segments S1–S4. We mutated these residues individually in mSlo1 BK channels to determine their role in voltage gating, and characterized the voltage dependence of steady-state activation (Po) and IK kinetics (τ(IK)) over an extended voltage range in 0–50 μM [Ca2+]i. mSlo1 contains several positively charged arginines in S4, but only one (R213) together with residues in S2 (D153, R167) and S3 (D186) are potentially voltage sensing based on the ability of charge-altering mutations to reduce the maximal voltage dependence of PO. The voltage dependence of PO and τ(IK) at extreme negative potentials was also reduced, implying that the closed–open conformational change and voltage sensor activation share a common source of gating charge. Although the position of charged residues in the BK and KV channel sequence appears conserved, the distribution of voltage-sensing residues is not. Thus the weak voltage dependence of BK channel activation does not merely reflect a lack of charge but likely differences with respect to KV channels in the position and movement of charged residues within the electric field. Although mutation of most sites in S1–S4 did not reduce gating charge, they often altered the equilibrium constant for voltage sensor activation. In particular, neutralization of R207 or R210 in S4 stabilizes the activated state by 3–7 kcal mol−1, indicating a strong contribution of non–voltage-sensing residues to channel function, consistent with their participation in state-dependent salt bridge interactions. Mutations in S4 and S3 (R210E, D186A, and E180A) also unexpectedly weakened the allosteric coupling of voltage sensor activation to channel opening. The implications of our findings for BK channel voltage gating and general mechanisms of voltage sensor activation are discussed.


2016 ◽  
Vol 113 (25) ◽  
pp. 6991-6996 ◽  
Author(s):  
Jiusheng Yan ◽  
Qin Li ◽  
Richard W. Aldrich

Ion channels regulate ion flow by opening and closing their pore gates. K+ channels commonly possess two pore gates, one at the intracellular end for fast channel activation/deactivation and the other at the selectivity filter for slow C-type inactivation/recovery. The large-conductance calcium-activated potassium (BK) channel lacks a classic intracellular bundle-crossing activation gate and normally show no C-type inactivation. We hypothesized that the BK channel’s activation gate may spatially overlap or coexist with the C-type inactivation gate at or near the selectivity filter. We induced C-type inactivation in BK channels and studied the relationship between activation/deactivation and C-type inactivation/recovery. We observed prominent slow C-type inactivation/recovery in BK channels by an extreme low concentration of extracellular K+ together with a Y294E/K/Q/S or Y279F mutation whose equivalent in Shaker channels (T449E/K/D/Q/S or W434F) caused a greatly accelerated rate of C-type inactivation or constitutive C-inactivation. C-type inactivation in most K+ channels occurs upon sustained membrane depolarization or channel opening and then recovers during hyperpolarized membrane potentials or channel closure. However, we found that the BK channel C-type inactivation occurred during hyperpolarized membrane potentials or with decreased intracellular calcium ([Ca2+]i) and recovered with depolarized membrane potentials or elevated [Ca2+]i. Constitutively open mutation prevented BK channels from C-type inactivation. We concluded that BK channel C-type inactivation is closed state-dependent and that its extents and rates inversely correlate with channel-open probability. Because C-type inactivation can involve multiple conformational changes at the selectivity filter, we propose that the BK channel’s normal closing may represent an early conformational stage of C-type inactivation.


2009 ◽  
Vol 133 (3) ◽  
pp. 263-282 ◽  
Author(s):  
Zhe Zhang ◽  
Xu-Hui Zeng ◽  
Xiao-Ming Xia ◽  
Christopher J. Lingle

N termini of auxiliary β subunits that produce inactivation of large-conductance Ca2+-activated K+ (BK) channels reach their pore-blocking position by first passing through side portals into an antechamber separating the BK pore module and the large C-terminal cytosolic domain. Previous work indicated that the β2 subunit inactivation domain is protected from digestion by trypsin when bound in the inactivated conformation. Other results suggest that, even when channels are closed, an inactivation domain can also be protected from digestion by trypsin when bound within the antechamber. Here, we provide additional tests of this model and examine its applicability to other β subunit N termini. First, we show that specific mutations in the β2 inactivation segment can speed up digestion by trypsin under closed-channel conditions, supporting the idea that the β2 N terminus is protected by binding within the antechamber. Second, we show that cytosolic channel blockers distinguish between protection mediated by inactivation and protection under closed-channel conditions, implicating two distinct sites of protection. Together, these results confirm the idea that β2 N termini can occupy the BK channel antechamber by interaction at some site distinct from the BK central cavity. In contrast, the β3a N terminus is digested over 10-fold more quickly than the β2 N terminus. Analysis of factors that contribute to differences in digestion rates suggests that binding of an N terminus within the antechamber constrains the trypsin accessibility of digestible basic residues, even when such residues are positioned outside the antechamber. Our analysis indicates that up to two N termini may simultaneously be protected from digestion. These results indicate that inactivation domains have sites of binding in addition to those directly involved in inactivation.


2015 ◽  
Vol 112 (16) ◽  
pp. 5237-5242 ◽  
Author(s):  
Yu Zhou ◽  
Xiao-Ming Xia ◽  
Christopher J. Lingle

To probe structure and gating-associated conformational changes in BK-type potassium (BK) channels, we examined consequences of Cd2+ coordination with cysteines introduced at two positions in the BK inner pore. At V319C, the equivalent of valine in the conserved Kv proline-valine-proline (PVP) motif, Cd2+ forms intrasubunit coordination with a native glutamate E321, which would place the side chains of V319C and E321 much closer together than observed in voltage-dependent K+ (Kv) channel structures, requiring that the proline between V319C and E321 introduces a kink in the BK S6 inner helix sharper than that observed in Kv channel structures. At inner pore position A316C, Cd2+ binds with modest state dependence, suggesting the absence of an ion permeation gate at the cytosolic side of BK channel. These results highlight fundamental structural differences between BK and Kv channels in their inner pore region, which likely underlie differences in voltage-dependent gating between these channels.


2000 ◽  
Vol 116 (6) ◽  
pp. 845-864 ◽  
Author(s):  
Ronghua ZhuGe ◽  
Kevin E. Fogarty ◽  
Richard A. Tuft ◽  
Lawrence M. Lifshitz ◽  
Kemal Sayar ◽  
...  

Ca2+ sparks are highly localized cytosolic Ca2+ transients caused by a release of Ca2+ from the sarcoplasmic reticulum via ryanodine receptors (RyRs); they are the elementary events underlying global changes in Ca2+ in skeletal and cardiac muscle. In smooth muscle and some neurons, Ca2+ sparks activate large conductance Ca2+-activated K+ channels (BK channels) in the spark microdomain, causing spontaneous transient outward currents (STOCs) that regulate membrane potential and, hence, voltage-gated channels. Using the fluorescent Ca2+ indicator fluo-3 and a high speed widefield digital imaging system, it was possible to capture the total increase in fluorescence (i.e., the signal mass) during a spark in smooth muscle cells, which is the first time such a direct approach has been used in any system. The signal mass is proportional to the total quantity of Ca2+ released into the cytosol, and its rate of rise is proportional to the Ca2+ current flowing through the RyRs during a spark (ICa(spark)). Thus, Ca2+ currents through RyRs can be monitored inside the cell under physiological conditions. Since the magnitude of ICa(spark) in different sparks varies more than fivefold, Ca2+ sparks appear to be caused by the concerted opening of a number of RyRs. Sparks with the same underlying Ca2+ current cause STOCs, whose amplitudes vary more than threefold, a finding that is best explained by variability in coupling ratio (i.e., the ratio of RyRs to BK channels in the spark microdomain). The time course of STOC decay is approximated by a single exponential that is independent of the magnitude of signal mass and has a time constant close to the value of the mean open time of the BK channels, suggesting that STOC decay reflects BK channel kinetics, rather than the time course of [Ca2+] decline at the membrane. Computer simulations were carried out to determine the spatiotemporal distribution of the Ca2+ concentration resulting from the measured range of ICa(spark). At the onset of a spark, the Ca2+ concentration within 200 nm of the release site reaches a plateau or exceeds the [Ca2+]EC50 for the BK channels rapidly in comparison to the rate of rise of STOCs. These findings suggest a model in which the BK channels lie close to the release site and are exposed to a saturating [Ca2+] with the rise and fall of the STOCs determined by BK channel kinetics. The mechanism of signaling between RyRs and BK channels may provide a model for Ca2+ action on a variety of molecular targets within cellular microdomains.


1995 ◽  
Vol 15 (6) ◽  
pp. 515-530 ◽  
Author(s):  
H. Vais ◽  
P. N. R. Usherwood

The effects of ryanodine, 9,21-didehydroryanodine and 9,21-didehydroryanodol on two types of K+ channel (a maxi, Ca2+-activated, 170 pS channel (BK channel) and an inward rectifier, stretch-sensitive channel of 35 pS conductance (IK channel) found in the plasma membrane of locust skeletal muscle have been investigated. 10−9M-10−5M ryanodine irreversibly induced a dose-dependent reduction of the reversal potential (Vrev) of the currents of both channels, i.e. from ~60 mV in the absence of the alkaloid to ~15 mV for 10−5M ryanodine, measured under physiologically normal K+ and Na+ gradients. In both cases the change in the ionic selectivity was Ca2+-independent. 9,21-didehydroryanodine and 9,21-didehyroryanodol also reduced Vrev, but only to ~35 mV during application of 10−5M of these compounds. Additionally, 9,21-didehydroryanodine reversibly diminished the conductances of the two K+ channels. To test the hypothesis that ryanoids increase Na+ permeability by enlarging the K+ channels, the channels were probed with quaternary ammonium ions during ryanoid application. When applied to the cytoplasmic face of inside-out patches exised from locust muscle membrane, TEA blocked the K+ channels in a voltage-dependent fashion. The dissociation constant (Kd(0)) for TEA block of the IK channel was reduced from 44 mM to 1 mM by 10−7 M ryanodine, but the voltage-dependence of the block was unaffected. Qualitatively similar data were obtained for the BK channel. Ryanodine had no effect on the Kd for cytoplasmically-applied TMA. However, the voltage-dependence for TMA block was increased for both K+ channels, from 0.47 to ~0.8 with 10−6M ryanodine. The effects of ryanodine on TEA and TMA block support the hypothesis that ryanodine enlarges the K+ channels so as to facilitate permeation of partially hydrated Na+ ions.


2010 ◽  
Vol 299 (5) ◽  
pp. C1068-C1078 ◽  
Author(s):  
Haruki Higashimori ◽  
Víctor M. Blanco ◽  
Vengopal Raju Tuniki ◽  
John R. Falck ◽  
Jessica A. Filosa

Epoxyeicosatrienoic acids (EETs), synthesized and released by astrocytes in response to glutamate, are known to play a pivotal role in neurovascular coupling. In vascular smooth muscle cells (VSMC), EETs activate large-conductance, Ca2+-activated K+ (BK) channels resulting in hyperpolarization and vasodilation. However, the functional role and mechanism of action for glial-derived EETs are still to be determined. In this study, we evaluated the effect of the synthetic EET analog 11-nonyloxy-undec-8(Z)-enoic acid (NUD-GA) on outward K+ currents mediated by calcium-activated K+ channels. Addition of NUD-GA significantly increased intracellular Ca2+ and outward K+ currents in perivascular astrocytes. NUD-GA-induced currents were significantly inhibited by BK channel blockers paxilline and tetraethylammonium (TEA) (23.4 ± 2.4%; P < 0.0005). Similarly, NUD-GA-induced currents were also significantly inhibited in the presence of the small-conductance Ca2+-activated K+ channel inhibitor apamin along with a combination of blockers against glutamate receptors (12.8 ± 2.70%; P < 0.05). No changes in outward currents were observed in the presence of the channel blocker for intermediate-conductance K+ channels TRAM-34. Blockade of the endogenous production of EETs with N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH) significantly blunted ( dl)-1-aminocyclopentane-trans-1,3-dicarboxylic acid ( t-ACPD)-induced outward K+ currents ( P < 0.05; n = 6). Both NUD-GA and t-ACPD significantly increased BK channel single open probability; the later was blocked following MS-PPOH incubation. Our data supports the idea that EETs are potent K+ channel modulators in cortical perivascular astrocytes and further suggest that these metabolites may participate in NVC by modulating the levels of K+ released at the gliovascular space.


2015 ◽  
Vol 146 (2) ◽  
pp. 133-146 ◽  
Author(s):  
Ignacio Díaz-Franulic ◽  
Romina V. Sepúlveda ◽  
Nieves Navarro-Quezada ◽  
Fernando González-Nilo ◽  
David Naranjo

K channels mediate the selective passage of K+ across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K+ transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker’s reported ∼20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K+ is set to ∼4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K+], beyond that of P475D, suggesting an ∼200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum conductance of the large conductance K (BK) channel (the K channel of highest conductance), reducing the energy gap between their K+ transport rates to ∼1 kT. Thus, although Shaker’s pore sustains ion translocation as the BK channel’s does, higher energetic costs of ion stabilization or higher friction with the ion’s rigid hydration cage in its narrower aqueous cavity may entail higher resistance.


2021 ◽  
Vol 5 (05) ◽  
pp. 01-07
Author(s):  
Naveena Lavanya Latha Jeevigunta ◽  
E. Susithra ◽  
Gouthami Thumma ◽  
MV. Basaveswara Rao ◽  
Kiran Gangarapu

BK channels, or voltage-gated Ca2+ channels, are essential regulators of neuronal excitability and muscular contractions, all of which are abnormal in epilepsy, a chronic neuronal disease. The form, frequency, and transmission of action potentials (APs), as well as neurotransmitter release from presynaptic terminals, are all influenced by BK channels found in the plasma membrane of neurons. Over the last two decades, several naturally occurring BK channel modulators have attracted a lot of attention. The structural and pharmacological properties of BK channel blockers are discussed in this article. The properties of various venom peptide toxins from scorpions and snakes are first identified, with a focus on their distinctive structural motifs, such as their disulfide bond formation pattern, the binding interface between the toxin and the BK channel, and the functional consequences of the toxins' blockage of BK channels. Then, several non-peptide BK channel blockers are discussed, along with their molecular formula and pharmacological impact on BK channels. The precise categorization and explanations of these BK channel blockers are hoped to provide mechanistic insights into BK channel blockade. The structures of peptide toxins and non-peptide compounds may serve as models for the development of new channel blockers, as well as aid in the optimization of lead compounds for use in neurological disorders.


Sign in / Sign up

Export Citation Format

Share Document