scholarly journals Intracellular calcium movements during relaxation and recovery of superfast muscle fibers of the toadfish swimbladder

2014 ◽  
Vol 143 (5) ◽  
pp. 605-620 ◽  
Author(s):  
Frank E. Nelson ◽  
Stephen Hollingworth ◽  
Lawrence C. Rome ◽  
Stephen M. Baylor

The mating call of the Atlantic toadfish is generated by bursts of high-frequency twitches of the superfast twitch fibers that surround the swimbladder. At 16°C, a calling period can last several hours, with individual 80–100-Hz calls lasting ∼500 ms interleaved with silent periods (intercall intervals) lasting ∼10 s. To understand the intracellular movements of Ca2+ during the intercall intervals, superfast fibers were microinjected with fluo-4, a high-affinity fluorescent Ca2+ indicator, and stimulated by trains of 40 action potentials at 83 Hz, which mimics fiber activity during calling. The fluo-4 fluorescence signal was measured during and after the stimulus trains; the signal was also simulated with a kinetic model of the underlying myoplasmic Ca2+ movements, including the binding and transport of Ca2+ by the sarcoplasmic reticulum (SR) Ca2+ pumps. The estimated total amount of Ca2+ released from the SR during a first stimulus train is ∼6.5 mM (concentration referred to the myoplasmic water volume). At 40 ms after cessation of stimulation, the myoplasmic free Ca2+ concentration ([Ca2+]) is below the threshold for force generation (∼3 µM), yet the estimated concentration of released Ca2+ remaining in the myoplasm (Δ[CaM]) is large, ∼5 mM, with ∼80% bound to parvalbumin. At 10 s after stimulation, [Ca2+] is ∼90 nM (three times the assumed resting level) and Δ[CaM] is ∼1.3 mM, with 97% bound to parvalbumin. Ca2+ movements during the intercall interval thus appear to be strongly influenced by (a) the accumulation of Ca2+ on parvalbumin and (b) the slow rate of Ca2+ pumping that ensues when parvalbumin lowers [Ca2+] near the resting level. With repetitive stimulus trains initiated at 10-s intervals, Ca2+ release and pumping come quickly into balance as a result of the stability (negative feedback) supplied by the increased rate of Ca2+ pumping at higher [Ca2+].

2006 ◽  
Vol 291 (1) ◽  
pp. H327-H335 ◽  
Author(s):  
Sergey F. Mironov ◽  
Frederick J. Vetter ◽  
Arkady M. Pertsov

Fluorescence imaging using voltage-sensitive dyes is an important tool for studying electrical propagation in the heart. Yet, the low amplitude of the voltage-sensitive component in the fluorescence signal and high acquisition rates dictated by the rapid propagation of the excitation wave front make it difficult to achieve recordings with high signal-to-noise ratios. Although spatially and temporally filtering the acquired signals has become de facto one of the key elements of optical mapping, there is no consensus regarding their use. Here we characterize the spatiotemporal spectra of optically recorded action potentials and determine the distortion produced by conical filters of different sizes. On the basis of these findings, we formulate the criteria for rational selection of filter characteristics. We studied the evolution of the spatial spectra of the propagating wave front after epicardial point stimulation of the isolated, perfused right ventricular free wall of the pig heart stained with di-4-ANEPPS. We found that short-wavelength (<3 mm) spectral components represent primarily noise and surface features of the preparation (coronary vessels, fat, and connective tissue). The time domain of the optical action potential spectrum also lacks high-frequency components (>100 Hz). Both findings are consistent with the reported effect of intrinsic blurring caused by light scattering inside the myocardial wall. The absence of high-frequency spectral components allows the use of aggressive low-pass spatial and temporal filters without affecting the optical action potential morphology. We show examples where the signal-to-noise ratio increased up to 150 with <3% distortion. A generalization of our approach to the rational filter selection in various applications is discussed.


Author(s):  
Zakarya Omar ◽  
Xingsong Wang ◽  
Khalid Hussain ◽  
Mingxing Yang

AbstractThe typical power-assisted hip exoskeleton utilizes rotary electrohydraulic actuator to carry out strength augmentation required by many tasks such as running, lifting loads and climbing up. Nevertheless, it is difficult to precisely control it due to the inherent nonlinearity and the large dead time occurring in the output. The presence of large dead time fires undesired fluctuation in the system output. Furthermore, the risk of damaging the mechanical parts of the actuator increases as these high-frequency underdamped oscillations surpass the natural frequency of the system. In addition, system closed-loop performance is degraded and the stability of the system is unenviably affected. In this work, a Sliding Mode Controller enhanced by a Smith predictor (SMC-SP) scheme that counts for the output delay and the inherent parameter nonlinearities is presented. SMC is utilized for its robustness against the uncertainty and nonlinearity of the servo system parameters whereas the Smith predictor alleviates the dead time of the system’s states. Experimental results show smoother response of the proposed scheme regardless of the amount of the existing dead time. The response trajectories of the proposed SMC-SP versus other control methods were compared for a different predefined dead time.


1900 ◽  
Vol 66 (424-433) ◽  
pp. 110-125 ◽  

It has long been held that a large number of colloidal solutions are related to or identical with suspensions of solid matter in a fluid in which the particles of solid are so small as to settle at an infinitely slow rate. Such solutions are the colloidal solutions of metals and of sulphides such as those of antimony, arsenic, and cadmium.


2000 ◽  
Vol 122 (29) ◽  
pp. 7130-7131 ◽  
Author(s):  
Sarah J. Luchansky ◽  
Scott J. Nolan ◽  
Anne M. Baranger

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Mario Durán ◽  
Jean-Claude Nédélec ◽  
Sebastián Ossandón

An efficient numerical method, using integral equations, is developed to calculate precisely the acoustic eigenfrequencies and their associated eigenvectors, located in a given high frequency interval. It is currently known that the real symmetric matrices are well adapted to numerical treatment. However, we show that this is not the case when using integral representations to determine with high accuracy the spectrum of elliptic, and other related operators. Functions are evaluated only in the boundary of the domain, so very fine discretizations may be chosen to obtain high eigenfrequencies. We discuss the stability and convergence of the proposed method. Finally we show some examples.


1998 ◽  
Vol 525 ◽  
Author(s):  
B. Tillack ◽  
D. Bolze ◽  
G. Fischer ◽  
G. Kissinger ◽  
D. Knoll ◽  
...  

ABSTRACTWe have determined the process capability of Low Pressure (Rapid Thermal) Chemical Vapor Deposition (LP(RT)CVD) of epitaxial Si/SiGe/Si stacks for heterojunction bipolar transistors (HIBTs). The transistor parameters primarily influenced by the epitaxial characteristics were measured for 600 identically processed 4” wafers. The results demonstrate that it is possible to control accurately the epitaxial process for a 25 nm thick graded SiGe base profile with 20 % Ge and very narrow B doping (5 nm). The pipe limited device yield of about 90 % for an emitter area of 104 μm2 indicates a very low defect density in the epitaxial layer stack. The process capability indices determined from about 40,000 data points demonstrate the stability and capability of the LP(RT)CVD epitaxy with regard to manufacturing requirements.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Kwabena Sarpong ◽  
Bhaskar Datta

The binding affinity and specificity of nucleic acid aptamers have made them valuable candidates for use as sensors in diagnostic applications. In particular, chromophore-functionalized aptamers offer a relatively simple format for detection and quantification of target molecules. We describe the use of nucleic-acid-staining reagents as an effective tool for detecting and signaling aptamer-target interactions. Aptamers varying in size and structure and targeting a range of molecules have been used in conjunction with commercially available chromophores to indicate and quantify the presence of cognate targets with high sensitivity and selectivity. Our assay precludes the covalent modification of nucleic acids and relies on the differential fluorescence signal of chromophores when complexed with aptamers with or without their cognate target. We also evaluate factors that are critical for the stability of the complex between the aptamer and chromophore in presence or absence of target molecules. Our results indicate the possibility of controlling those factors to enhance the sensitivity of target detection by the aptamers used in such assays.


2009 ◽  
Vol 54 (1) ◽  
pp. 565-569 ◽  
Author(s):  
Anne Marie Queenan ◽  
Wenchi Shang ◽  
Robert Flamm ◽  
Karen Bush

ABSTRACT The stability of doripenem to hydrolysis by β-lactamases from molecular classes A to D was compared to the stability for imipenem and meropenem. Doripenem was stable to hydrolysis by extended-spectrum β-lactamases and AmpC type β-lactamases and demonstrated high affinity for the AmpC enzymes. For the serine carbapenemases SME-3 and KPC-2 and metallo-β-lactamases IMP-1 and VIM-2, doripenem hydrolysis was generally 2- to 150-fold slower than imipenem hydrolysis. SPM-1 hydrolyzed meropenem and doripenem fourfold faster than imipenem.


Author(s):  
Minghui Zheng ◽  
Masayoshi Tomizuka

Vibration with multiple large peaks at high frequencies may cause significant performance degradation and have become a major concern in modern high precision control systems. To deal with such high-frequency peaks, it is proposed to design a frequency-shaped sliding mode controller based on H∞ synthesis. It obtains an ‘optimal’ filter to shape the sliding surface, and thus provides frequency-dependent control allocation. The proposed frequency-shaping method assures the stability in the presence of multiple-peak vibration sources, and minimizes the weighted H∞ norm of the sliding surface dynamics. The evaluation is performed on a simulated hard disk drive with actual vibration sources from experiments, and the effectiveness of large vibration peak suppression is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document