scholarly journals Inactivation viewed through single sodium channels.

1984 ◽  
Vol 84 (4) ◽  
pp. 535-564 ◽  
Author(s):  
C A Vandenberg ◽  
R Horn

Recordings of the sodium current in tissue-cultured GH3 cells show that the rate of inactivation in whole cell and averaged single channel records is voltage dependent: tau h varied e-fold/approximately 26 mV. The source of this voltage dependence was investigated by examining the voltage dependence of individual rate constants, estimated by maximum likelihood analysis of single channel records, in a five-state kinetic model. The rate constant for inactivating from the open state, rather than closing, increased with depolarization, as did the probability that an open channel inactivates. The rate constant for closing from the open state had the opposite voltage dependence. Both rate constants contributed to the mean open time, which was not very voltage dependent. Both open time and burst duration were less than tau h for voltages up to -20 mV. The slowest time constant of activation, tau m, was measured from whole cell records, by fitting a single exponential either to tail currents or to activating currents in trypsin-treated cells, in which the inactivation was abolished. tau m was a bell-shaped function of voltage and had a voltage dependence similar to tau h at voltages more positive than -35 mV, but was smaller than tau h. At potentials more negative than about -10 mV, individual channels may open and close several times before inactivating. Therefore, averaged single channel records, which correspond with macroscopic current elicited by a depolarization, are best described by a convolution of the first latency density with the autocorrelation function rather than with 1 - (channel open time distribution). The voltage dependence of inactivation from the open state, in addition to that of the activation process, is a significant factor in determining the voltage dependence of macroscopic inactivation. Although the rates of activation and inactivation overlapped greatly, independent and coupled inactivation could not be statistically distinguished for two models examined. Although rates of activation affect the observed rate of inactivation at intermediate voltages, extrapolation of our estimates of rate constants suggests that at very depolarized voltages the activation process is so fast that it is an insignificant factor in the time course of inactivation. Prediction of gating currents shows that an inherently voltage-dependent inactivation process need not produce a conspicuous component in the gating current.

1984 ◽  
Vol 84 (3) ◽  
pp. 361-377 ◽  
Author(s):  
D Yamamoto ◽  
J Z Yeh

The kinetics of 9-aminoacridine (9-AA) block of single Na channels in neuroblastoma N1E-115 cells were studied using the gigohm seal, patch clamp technique, under the condition in which the Na current inactivation had been eliminated by treatment with N-bromoacetamide (NBA). Following NBA treatment, the current flowing through individual Na channels was manifested by square-wave open events lasting from several to tens of milliseconds. When 9-AA was applied to the cytoplasmic face of Na channels at concentrations ranging from 30 to 100 microM, it caused repetitive rapid transitions (flickering) between open and blocked states within single openings of Na channels, without affecting the amplitude of the single channel current. The histograms for the duration of blocked states and the histograms for the duration of open states could be fitted with a single-exponential function. The mean open time (tau o) became shorter as the drug concentration was increased, while the mean blocked time (tau b) was concentration independent. The association (blocking) rate constant, kappa, calculated from the slope of the curve relating the reciprocal mean open time to 9-AA concentration, showed little voltage dependence, the rate constant being on the order of 1 X 10(7) M-1s-1. The dissociation (unblocking) rate constant, l, calculated from the mean blocked time, was strongly voltage dependent, the mean rate constant being 214 s-1 at 0 mV and becoming larger as the membrane being hyperpolarized. The voltage dependence suggests that a first-order blocking site is located at least 63% of the way through the membrane field from the cytoplasmic surface. The equilibrium dissociation constant for 9-AA to block the Na channel, defined by the relation of l/kappa, was calculated to be 21 microM at 0 mV. Both tau -1o and tau -1b had a Q10 of 1.3, which suggests that binding reaction was diffusion controlled. The burst time in the presence of 9-AA, which is the sum of open times and blocked times, was longer than the lifetime of open channels in the absence of drug. All of the features of 9-AA block of single Na channels are compatible with the sequential model in which 9-AA molecules block open Na channels, and the blocked channels could not close until 9-AA molecules had left the blocking site in the channels.


1994 ◽  
Vol 103 (2) ◽  
pp. 249-278 ◽  
Author(s):  
T Hoshi ◽  
W N Zagotta ◽  
R W Aldrich

Kinetics of single voltage-dependent Shaker potassium channels expressed in Xenopus oocytes were studied in the absence of fast N-type inactivation. Comparison of the single-channel first latency distribution and the time course of the ensemble average current showed that the activation time course and its voltage dependence are largely determined by the transitions before first opening. The open dwell time data are consistent with a single kinetically distinguishable open state. Once the channel opens, it can enter at least two closed states which are not traversed frequently during the activation process. The rate constants for the transitions among these closed states and the open state are nearly voltage-independent at depolarized voltages (> -30 mV). During the deactivation process at more negative voltages, the channel can close directly to a closed state in the activation pathway in a voltage-dependent fashion.


1994 ◽  
Vol 103 (2) ◽  
pp. 279-319 ◽  
Author(s):  
W N Zagotta ◽  
T Hoshi ◽  
J Dittman ◽  
R W Aldrich

Voltage-dependent gating behavior of Shaker potassium channels without N-type inactivation (ShB delta 6-46) expressed in Xenopus oocytes was studied. The voltage dependence of the steady-state open probability indicated that the activation process involves the movement of the equivalent of 12-16 electronic charges across the membrane. The sigmoidal kinetics of the activation process, which is maintained at depolarized voltages up to at least +100 mV indicate the presence of at least five sequential conformational changes before opening. The voltage dependence of the gating charge movement suggested that each elementary transition involves 3.5 electronic charges. The voltage dependence of the forward opening rate, as estimated by the single-channel first latency distribution, the final phase of the macroscopic ionic current activation, the ionic current reactivation and the ON gating current time course, showed movement of the equivalent of 0.3 to 0.5 electronic charges were associated with a large number of the activation transitions. The equivalent charge movement of 1.1 electronic charges was associated with the closing conformational change. The results were generally consistent with models involving a number of independent and identical transitions with a major exception that the first closing transition is slower than expected as indicated by tail current and OFF gating charge measurements.


1987 ◽  
Vol 65 (4) ◽  
pp. 568-573 ◽  
Author(s):  
C. L. Schauf

Time- and voltage-dependent behavior of the Na+ conductance in dialyzed intact Myxicola axons was compared with cut-open axons subjected to loose-patch clamp of the interior and to axons where Gigaseals were formed after brief enzyme digestion. Voltage and time dependence of activation, inactivation, and reactivation were identical in whole-axons and loose-patch preparations. Single channels observed in patch-clamp axons had a conductance of 18.3 ± 2.3 pS and a mean open time of 0.84 ± 0.12 ms. The time-dependence of Na+ currents found by averaging patch-clamp records was similar to intact axons, as was the voltage dependence of activation. Steady-state inactivation in patch-clamped axons was shifted by an average of 15 mV from that seen in loose-patch or intact axons. Substitution of D2O for H2O decreased single channel conductance by 24 ± 6% in patch-clamped axons compared with 28 ± 4% in intact axons, slowed inactivation by 58 ± 8% compared with 49 ± 6%, and increased mean open time by 52 ± 7%. The results confirm observations on macroscopic channel behavior in Myxicola and resemble that seen in other excitable tissues.


2005 ◽  
Vol 288 (6) ◽  
pp. H2666-H2676 ◽  
Author(s):  
Tiehua Chen ◽  
Masashi Inoue ◽  
Michael F. Sheets

Deletion of a phenylalanine at position 1617 (delF1617) in the extracellular linker between segments S3 and S4 in domain IV of the human heart Na+ channel (hH1a) has been tentatively associated with long QT syndrome type 3 (LQT3). In a mammalian cell expression system, we compared whole cell, gating, and single-channel currents of delF1617 with those of wild-type hH1a. The half points of the peak activation-voltage curve for the two channels were similar, as were the deactivation time constants at hyperpolarized test potentials. However, delF1617 demonstrated a significant negative shift of −7 mV in the half point of the voltage-dependent Na+ channel availability curve compared with wild type. In addition, both the time course of decay of Na+ current ( INa) and two-pulse development of inactivation of delF1617 were faster at negative test potentials, whereas they tended to be slower at positive potentials compared with wild type. Mean channel open times for delF1617 were shorter at potentials <0 mV, whereas they were longer at potentials >0 mV compared with wild type. Using anthopleurin-A, a site-3 toxin that inhibits movement of segment S4 in domain IV (S4-DIV), we found that gating charge contributed by the S4-DIV in delF1617 was reduced 37% compared with wild type. We conclude that deletion of a single amino acid in the S3-S4 linker of domain IV alters the voltage dependence of fast inactivation via a reduction in the gating charge contributed by S4-DIV and can cause either a gain or loss of INa, depending on membrane potential.


1983 ◽  
Vol 81 (4) ◽  
pp. 547-569 ◽  
Author(s):  
C Lingle ◽  
A Auerbach

The properties of acetylcholine-activated excitatory currents on the gm1 muscle of three marine decapod crustaceans, the spiny lobsters Panulirus argus and interruptus, and the crab Cancer borealis, were examined using either noise analysis, analysis of synaptic current decays, or analysis of the voltage dependence of ionophoretically activated cholinergic conductance increases. The apparent mean channel open time (tau n) obtained from noise analysis at -80 mV and 12 degrees C was approximately 13 ms; tau n was prolonged e-fold for about every 100-mV hyperpolarization in membrane potential; tau n was prolonged e-fold for every 10 degrees C decrease in temperature. Gamma, the single-channel conductance, at 12 degrees C was approximately 18 pS and was not affected by voltage; gamma was increased approximately 2.5-fold for every 10 degrees C increase in temperature. Synaptic currents decayed with a single exponential time course, and at -80 mV and 12 degrees C, the time constant of decay of synaptic currents, tau ejc, was approximately 14-15 ms and was prolonged e-fold about every 140-mV hyperpolarization; tau ejc was prolonged about e-fold for every 10 degrees C decrease in temperature. The voltage dependence of the amplitude of steady-state cholinergic currents suggests that the total conductance increase produced by cholinergic agonists is increased with hyperpolarization. Compared with glutamate channels found on similar decapod muscles (see the following article), the acetylcholine channels stay open longer, conduct ions more slowly, and are more sensitive to changes in the membrane potential.


1990 ◽  
Vol 96 (1) ◽  
pp. 135-165 ◽  
Author(s):  
C K Solc ◽  
R W Aldrich

The voltage-dependent gating of transient A2-type potassium channels from primary cultures of larval Drosophila central nervous system neurons was studied using whole-cell and single-channel voltage clamp. A2 channels are genetically distinct from the Shaker A1 channels observed in Drosophila muscle, and differ in single-channel conductance, voltage dependence, and gating kinetics. Single A2 channels were recorded and analyzed at -30, -10, +10, and +30 mV. The channels opened in bursts in response to depolarizing steps, with three to four openings per burst and two to three bursts per 480-ms pulse (2.8-ms burst criterion). Mean open durations were in a range of 2-4 ms and mean burst durations in a range of 9-17 ms. With the exception of the first latency distributions, none of the means of the distributions measured showed a consistent trend with voltage. Macroscopic inactivation of both whole-cell A currents and ensemble average currents of single A2 channels was well fitted by a sum of two exponentials. The fast time constants in different cells were in a range of 9-25 ms, and the slow time constants in a range of 60-140 ms. A six-state kinetic model (three closed, one open, two inactivated states) was tested at four command voltages by fitting frequency histograms of open durations, burst durations, burst closed durations, number of openings per burst, and number of bursts per trace. The model provided good fits to these data, as well as to the ensemble averages. With the exception of the rates leading to initial opening, the transitions in the model were largely independent of voltage.


2013 ◽  
Vol 304 (9) ◽  
pp. C858-C872 ◽  
Author(s):  
Colin J. Stoneking ◽  
Oshini Shivakumar ◽  
David Nicholson Thomas ◽  
William H. Colledge ◽  
Michael J. Mason

We have isolated a K+-selective, Ca2+-dependent whole cell current and single-channel correlate in the human erythroleukemia (HEL) cell line. The whole cell current was inhibited by the intermediate-conductance KCa3.1 inhibitors clotrimazole, TRAM-34, and charybdotoxin, unaffected by the small-conductance KCa2 family inhibitor apamin and the large-conductance KCa1.1 inhibitors paxilline and iberiotoxin, and augmented by NS309. The single-channel correlate of the whole cell current was blocked by TRAM-34 and clotrimazole, insensitive to paxilline, and augmented by NS309 and had a single-channel conductance in physiological K+gradients of ∼9 pS. RT-PCR revealed that the KCa3.1 gene, but not the KCa1.1 gene, was expressed in HEL cells. The KCa3.1 current, isolated in HEL cells under whole cell patch-clamp conditions, displayed an activated current component during depolarizing voltage steps from hyperpolarized holding potentials and tail currents upon repolarization, consistent with voltage-dependent modulation. This activated current increased with increasing voltage steps above −40 mV and was sensitive to inhibition by clotrimazole, TRAM-34, and charybdotoxin and insensitive to apamin, paxilline, and iberiotoxin. In single-channel experiments, depolarization resulted in an increase in open channel probability ( Po) of KCa3.1, with no increase in channel number. The voltage modulation of Powas an increasing monotonic function of voltage. In the absence of elevated Ca2+, voltage was ineffective at inducing channel activity in whole cell and single-channel experiments. These data indicate that KCa3.1 in HEL cells displays a unique form of voltage dependence modulating Po.


1989 ◽  
Vol 94 (5) ◽  
pp. 881-910 ◽  
Author(s):  
E Cooper ◽  
A Shrier

Cultured sensory neurons from nodose ganglia were investigated with whole-cell patch-clamp techniques and single-channel recordings to characterize the A current. Membrane depolarization from -40 mV holding potential activated the delayed rectifier current (IK) at potentials positive to -30 mV; this current had a sigmoidal time course and showed little or no inactivation. In most neurons, the A current was completely inactivated at the -40 mV holding potential and required hyperpolarization to remove the inactivation; the A current was isolated by subtracting the IK evoked by depolarizations from -40 mV from the total outward current evoked by depolarizations from -90 mV. The decay of the A current on several neurons had complex kinetics and was fit by the sum of three exponentials whose time constants were 10-40 ms, 100-350 ms, and 1-3 s. At the single-channel level we found that one class of channel underlies the A current. The conductance of A channels varied with the square root of the external K concentration: it was 22 pS when exposed to 5.4 mM K externally, the increased to 40 pS when exposed to 140 mM K externally. A channels activated rapidly upon depolarization and the latency to first opening decreased with depolarization. The open time distributions followed a single exponential and the mean open time increased with depolarization. A channels inactivate in three different modes: some A channels inactivated with little reopening and gave rise to ensemble averages that decayed in 10-40 ms; other A channels opened and closed three to four times before inactivating and gave rise to ensemble averages that decayed in 100-350 ms; still other A channels opened and closed several hundred times and required seconds to inactivate. Channels gating in all three modes contributed to the macroscopic A current from the whole cell, but their relative contribution differed among neurons. In addition, A channels could go directly from the closed, or resting, state to the inactivated state without opening, and the probability for channels inactivating in this way was greater at less depolarized voltages. In addition, a few A channels appeared to go reversibly from a mode where inactivation occurred rapidly to a slow mode of inactivation.


1988 ◽  
Vol 91 (1) ◽  
pp. 73-106 ◽  
Author(s):  
T Hoshi ◽  
R W Aldrich

Properties of the whole-cell K+ currents and voltage-dependent activation and inactivation properties of single K+ channels in clonal pheochromocytoma (PC-12) cells were studied using the patch-clamp recording technique. Depolarizing pulses elicited slowly inactivating whole-cell K+ currents, which were blocked by external application of tetraethylammonium+, 4-aminopyridine, and quinidine. The amplitudes and time courses of these K+ currents were largely independent of the prepulse voltage. Although pharmacological agents and manipulation of the voltage-clamp pulse protocol failed to reveal any additional separable whole-cell currents in a majority of the cells examined, single-channel recordings showed that, in addition to the large Ca++-dependent K+ channels described previously in many other preparations, PC-12 cells had at least four distinct types of K+ channels activated by depolarization. These four types of K+ channels differed in the open-channel current-voltage relation, time course of activation and inactivation, and voltage dependence of activation and inactivation. These K+ channels were designated the Kw, Kz, Ky, and Kx channels. The typical chord conductances of these channels were 18, 12, 7, and 7 pS in the excised configuration using Na+-free saline solutions. These four types of K+ channels opened in the presence of low concentrations of internal Ca++ (1 nM). Their voltage-dependent gating properties can account for the properties of the whole-cell K+ currents in PC-12 cells.


Sign in / Sign up

Export Citation Format

Share Document