The Chemical Status of Bean Plants Afflicted with Bicarbonate-Induced Chlorosis

1952 ◽  
Vol 113 (4) ◽  
pp. 373-392 ◽  
Author(s):  
C. H. Wadleigh ◽  
J. W. Brown
Keyword(s):  
2012 ◽  
Vol 25 (2) ◽  
pp. 17-26
Author(s):  
Hassan A. Fusial Hutaf H. Jasim ◽  
Mohammed SH.R. Al-Shewailly
Keyword(s):  

Author(s):  
Ajeng Embri Legawati ◽  
Nur Azizah ◽  
Achmad Ramadhan

Green beans cultivation technology using mice pets control has been implemented in the Gluranploso village, Benjeng Gresik. The implementation of the technology performed for 2.5 months from August to October 2017. The purpose of the implementation is aimed to reduce the dependence of farmers on the use of chemical pesticides so that the farmers are aware of the negative impact of chemical pesticides. Assessing the impact of the utilization of Bintaro fruit and fruit extracts to explore ways of making Bintaro as a natural biopesticide to overcome rat attack on green bean plants in the Gluranploso village. Pest control mice can reduce the rate of loss of the crops more effectively and efficiently. Finally, with the use of those natural resources as a biopesticide material can also maintain the environmental balance


2010 ◽  
Vol II (4) ◽  
pp. 75-79 ◽  
Author(s):  
Zlatko Zlatev ◽  
Andon Vassilev ◽  
Vasilii Goltsev ◽  
Georgi Popov

Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 177
Author(s):  
Aline Moreira Dias ◽  
Miguel Borges ◽  
Maria Carolina Blassioli Moraes ◽  
Matheus Lorran Figueira Coelho ◽  
Andrej Čokl ◽  
...  

Stink bugs are major pests in diverse crops around the world. Pest management strategies based on insect behavioral manipulation could help to develop biorational management strategies of stink bugs. Insect mating disruption using vibratory signals is an approach with high potential for pest management. The objective of this work was to investigate the effect of conspecific female rival signals on the mating behavior and copulation of three stink bug species to establish their potential for mating disruption. Previously recorded female rival signals were played back to bean plants where pairs of the Neotropical brown stink bug, Euschistus heros, and two green stink bugs, Chinavia ubica and Chinavia impicticornis were placed. Vibratory communication and mating behavior were recorded for each pair throughout the experimental time (20 min). Female rival signals show a disrupting effect on the reproductive behavior of three conspecific investigated stink bug species. This effect was more clearly expressed in E. heros and C. ubica than in C. impicticornis. The likelihood of copulating in pairs placed on control plants, without rival signals, increased 29.41 times in E. heros, 4.6 times in C. ubica and 1.71 times in C. impicticornis. However, in the last case, the effect of female rivalry signals in copulation was not significant. The effect of mating disruption of female rival signals of the three stink bug species may originate from the observed reduction in specific vibratory communication signals emitted, which influences the duet formation and further development of different phases of mating behavior. Our results suggest that female rival signals have potential for application in manipulation and disruption of mating behavior of stink bugs. Further work needs to focus on the effects of female rival signals used in long duration experiments and also their interactions with chemical communication of stink bugs.


2021 ◽  
pp. 1-11
Author(s):  
Bruno Britto Lisboa ◽  
Thomas Müller Schmidt ◽  
Arthur Henrique Ely Thomé ◽  
Raul Antonio Sperotto ◽  
Camila Gazolla Volpiano ◽  
...  

Summary Inoculation of symbiotic N2-fixing rhizobacteria (rhizobia) in legumes is an alternative to reduce synthetic N fertiliser input to crops. Even though common bean benefits from the biological N2 fixation carried out by native rhizobia isolates, the low efficiency of this process highlights the importance of screening new strains for plant inoculation. Two rhizobial strains (SEMIA 4108 and SEMIA 4107) previously showed great potential to improve the growth of common beans under greenhouse conditions. Thus, this study evaluated the growth and grain yield of common bean plants inoculated with those strains in field experiments. The rhizobial identification was performed by 16S rRNA sequencing and the phylogeny showed that SEMIA 4108 and SEMIA 4107 are closely related to Rhizobium phaseoli, within a clade containing other 18 Rhizobium spp. type strains. Common bean plants inoculated with SEMIA 4107 showed similar productivity to N-fertilised (N+) plants in the first experiment (2016/17) and higher productivity in the second experiment (2018/19). The development of inoculated plants was different from that observed for N+. Nonetheless, comparing inoculated treatments with N-fertilised control, no yield or productivity losses at the end of the growing process were detected. Our results showed that inoculation of the rhizobial isolates SEMIA 4108 and SEMIA 4107 improved the growth and grain yield of common bean plants. The observed agronomical performance confirms that both strains were effective and can sustain common bean growth without nitrogen fertilisation under the edaphoclimatic conditions of this study.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 173
Author(s):  
Abeer F. Desouky ◽  
Ahmed H. Ahmed ◽  
Hartmut Stützel ◽  
Hans-Jörg Jacobsen ◽  
Yi-Chen Pao ◽  
...  

Pathogenesis-related (PR) proteins are known to play relevant roles in plant defense against biotic and abiotic stresses. In the present study, we characterize the response of transgenic faba bean (Vicia faba L.) plants encoding a PR10a gene from potato (Solanum tuberosum L.) to salinity and drought. The transgene was under the mannopine synthetase (pMAS) promoter. PR10a-overexpressing faba bean plants showed better growth than the wild-type plants after 14 days of drought stress and 30 days of salt stress under hydroponic growth conditions. After removing the stress, the PR10a-plants returned to a normal state, while the wild-type plants could not be restored. Most importantly, there was no phenotypic difference between transgenic and non-transgenic faba bean plants under well-watered conditions. Evaluation of physiological parameters during salt stress showed lower Na+-content in the leaves of the transgenic plants, which would reduce the toxic effect. In addition, PR10a-plants were able to maintain vegetative growth and experienced fewer photosystem changes under both stresses and a lower level of osmotic stress injury under salt stress compared to wild-type plants. Taken together, our findings suggest that the PR10a gene from potato plays an important role in abiotic stress tolerance, probably by activation of stress-related physiological processes.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 894
Author(s):  
Emad M. Hafez ◽  
Hany S. Osman ◽  
Usama A. Abd El-Razek ◽  
Mohssen Elbagory ◽  
Alaa El-Dein Omara ◽  
...  

The continuity of traditional planting systems in the last few decades has encountered its most significant challenge in the harsh changes in the global climate, leading to frustration in the plant growth and productivity, especially in the arid and semi-arid regions cultivated with moderate or sensitive crops to abiotic stresses. Faba bean, like most legume crops, is considered a moderately sensitive crop to saline soil and/or saline water. In this connection, a field experiment was conducted during the successive winter seasons 2018/2019 and 2019/2020 in a salt-affected soil to explore the combined effects of plant growth-promoting rhizobacteria (PGPR) and potassium (K) silicate on maintaining the soil quality, performance, and productivity of faba bean plants irrigated with either fresh water or saline water. Our findings indicated that the coupled use of PGPR and K silicate under the saline water irrigation treatment had the capability to reduce the levels of exchangeable sodium percentage (ESP) in the soil and to promote the activity of some soil enzymes (urease and dehydrogenase), which recorded nearly non-significant differences compared with fresh water (control) treatment, leading to reinstating the soil quality. Consequently, under salinity stress, the combined application motivated the faba bean vegetative growth, e.g., root length and nodulation, which reinstated the K+/Na+ ions homeostasis, leading to the lessening or equalizing of the activity level of enzymatic antioxidants (CAT, POD, and SOD) compared with the controls of both saline water and fresh water treatments, respectively. Although the irrigation with saline water significantly increased the osmolytes concentration (free amino acids and proline) in faba bean plants compared with fresh water treatment, application of PGPR or K-silicate notably reduced the osmolyte levels below the control treatment, either under stress or non-stress conditions. On the contrary, the concentrations of soluble assimilates (total soluble proteins and total soluble sugars) recorded pronounced increases under tested treatments, which enriched the plant growth, the nutrients (N, P, and K) uptake and translocation to the sink organs, which lastly improved the yield attributes (number of pods plant−1, number of seeds pod−1, 100-seed weight). It was concluded that the combined application of PGPR and K-silicate is considered a profitable strategy that is able to alleviate the harmful impact of salt stress alongside increasing plant growth and productivity.


1970 ◽  
Vol 48 (12) ◽  
pp. 2213-2217 ◽  
Author(s):  
B. Singh ◽  
D. K. Salunkhe

A solution containing 0.5 p.p.m. of atrazine, simazine, igran, or GS-14254 with 0.2% triton-B 1956 was applied to the foliage of 11-day-old seedlings of bush beans, Phaseolus vulgaris L. cultivar Tender-green, growing on vermiculite in a controlled environment. The activities of nitrate reductase, glutamic-pyruvic transaminase, α-amylase, starch phosphorylase, and adenosine triphosphatase were determined 5,10, and 20 days after treatment. In general, the activity of each of the five enzymes was stimulated by the treatment. The results suggest that protein increase following the application of.s-triazines to bean plants may stem in part from an enhanced rate of amino acid formation resulting from the induced increment in nitrate reductase and transaminase activity. The application of these chemicals also creates a metabolic condition favorable for greater use of carbohydrates needed for nitrate reduction and protein synthesis, and as a source of organic acid synthesis.


Sign in / Sign up

Export Citation Format

Share Document