Vegetative and Fruiting Responses of Tomatoes to High Temperature and Light Intensity

1953 ◽  
Vol 114 (4) ◽  
pp. 449-460 ◽  
Author(s):  
S. P. Johnson ◽  
Wayne C. Hall
2009 ◽  
Vol 34 (12) ◽  
pp. 2196-2201 ◽  
Author(s):  
Xue-Li QI ◽  
Lin HU ◽  
Hai-Bin DONG ◽  
Lei ZHANG ◽  
Gen-Song WANG ◽  
...  

Weed Science ◽  
1970 ◽  
Vol 18 (4) ◽  
pp. 509-514 ◽  
Author(s):  
Lafayette Thompson ◽  
F. W. Slife ◽  
H. S. Butler

Corn(Zea maysL.) in the two to three-leaf stage grown 18 to 21 days in a growth chamber under cold, wet conditions was injured by postemergence application of 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine) plus emulsifiable phytobland oil. Injury was most severe when these plants were kept under cold, wet conditions for 48 hr after the herbicidal spray was applied, followed by exposure to high light intensity and high temperature. Under these growth chamber conditions, approximately 50% of the atrazine-treated plants died. Since wet foliage before and after application increased foliar penetration and low temperature decreased the rate of detoxication to peptide conjugates, atrazine accumulated under cold, wet conditions. This accumulation of foliarly-absorbed atrazine and the “weakened” conditions of the plants grown under the stress conditions is believed to be responsible for the injury to corn. Hydroxylation and the dihydroxybenzoxazin-3-one content in the roots were reduced at low temperature, but it is unlikely that this contributed to the death of the corn.


Weed Science ◽  
1972 ◽  
Vol 20 (2) ◽  
pp. 172-176 ◽  
Author(s):  
Paul N. P. Chow

Growth of green foxtail (Setaria viridis (L.) Beauv.) was effectively controlled in the greenhouse by applying the sodium salt of trichloroacetic acid (TCA) as a postemergence treatment, when a rate of 0.84 kg/ha was used; when application preceded the two-leaf stage; and when 2.54 mm of water were available daily for moving TCA into the soil. There were significant interactions of TCA rate with light intensity, temperature, and source of seeds on the response of green foxtail. Seedhead production was curtailed at rates of 0.56 kg/ha or above when plants were grown under high light intensities (19,250 to 22,000 lux) and at moderate temperatures (20 to 22 C). Rates of 1.68 kg/ha or more were required to stop heading of foxtail grown at high temperature (27 C).


2019 ◽  
Vol 46 (6) ◽  
pp. 555 ◽  
Author(s):  
Milena T. Gerganova ◽  
Aygyun K. Faik ◽  
Maya Y. Velitchkova

The kinetics of photoinhibition in detached leaves from tomato plants (Solanium lycopersicum L. cv. M82) grown for 6 days under different combinations of optimal and moderately high temperature and optimal and high light intensity were studied. The inhibition of PSII was evaluated by changes in maximal quantum yield, the coefficient of photochemical quenching and the quantum yield of PSII. The changes of PSI activity was estimated by the redox state of P700. The involvement of different possible protective processes was checked by determination of nonphotochemical quenching and cyclic electron flow around PSI. To evaluate to what extent the photosynthetic apparatus and its response to high light treatment was affected by growth conditions, the kinetics of photoinhibition in isolated thylakoid membranes were also studied. The photochemical activities of both photosystems and changes in the energy distribution and interactions between them were evaluated by means of a Clark electrode and 77 K fluorescence analysis. The data showed an increased tolerance to photoinhibition in plants grown under a combination of moderately high temperature and light intensity, which was related to the stimulation of cyclic electron flow, PSI activity and rearrangements of pigment–protein complexes, leading to a decrease in the excitation energy delivered to PSII.


1969 ◽  
Vol 72 (3) ◽  
pp. 423-435 ◽  
Author(s):  
R. Q. Cannell

SUMMARYControlled-environment experiments showed that development of the coleoptile node tiller (T1) was suppressed much more than that of the tiller appearing in the axil of the first true leaf (T2) by high temperature (24/15 °C; 19/10 °C; 10/6 °C), by reduced photoperiod (16 h; 12·5 h) or by low light intensity (1100 ft-c; 1000 ft-c), but minimally in the newest variety, Deba Abed. Unlike previous field experiments, the T1 tiller appeared on more Spratt Archer than Maris Badger plants. Maris Badger plants produced more T1 tillers in a high-low temperature regime (19/10 °C; 10/6 °C) than in continuous low temperature (10/6 °C). In a field experiment T1 tiller number (and yield), but not the number of other major shoots, were severely reduced by late sowing of Spratt Archer, progressively reduced in Maris Badger, but minimally in Deba Abed. This seemed to be associated with higher temperatures at later sowings.


Weed Science ◽  
1982 ◽  
Vol 30 (3) ◽  
pp. 286-290 ◽  
Author(s):  
Robert R. Krueger ◽  
Dale L. Shaner

Germination of prostrate spurge (Euphorbia supinaRaf.) seeds collected in August, September, October, and November 1977 at Riverside, California was 53, 30, 18, and 16%, respectively. Stratification of seeds collected in August, September, and October at 5 C for 3 weeks or more increased germination to 70 to 80%. Prostrate spurge seeds germinated at constant temperatures of 20 to 40 C, with optimum temperatures of 25 to 30 C. Maximum germination occurred under alternating temperatures with a high temperature of 30 to 35 C and a low temperature of 15 to 25 C. Germination in the dark was much lower than in the light. Seedling establishment of seeds collected in August sown at 0.0- to 0.5-cm depths was 30 to 35%, but establishment from 2 cm declined to near 0%. Light intensity did not affect the number of seedlings established, but the seedlings established were larger under higher light intensities.


1998 ◽  
Vol 131 (3) ◽  
pp. 277-283 ◽  
Author(s):  
D. ROUSSOPOULOS ◽  
A. LIAKATAS ◽  
W. J. WHITTINGTON

A series of experiments investigating the interactive effects of light and temperature on vegetative growth, earliness, fruiting, yield and fibre properties in three cultivars of cotton, was undertaken in growth rooms. Two constant day/night temperature regimes with a difference of 4 °C (30/20 and 26/16·5 °C) were used throughout the growing season in combination with two light intensities (75 and 52·5 W m−2).The results showed that significant interactions occurred for most of the characters studied. Although the development of leaf area was mainly temperature-dependent, plants at harvest had a larger leaf area when high temperature was combined with low rather than with high light intensity. Leaf area was least in the low temperature–low light regime. However, the plants grown under the high temperature–low light combination weighed the least.Variations in the number of nodes and internode length were largely dependent on temperature rather than light. Light did, however, affect the numbers of branches, sympodia and monopodia. The first two of these were highest in the high light–high temperature regime and the third in the low light–low temperature regime.All other characters, except time to certain developmental stages and fibre length, were reduced at the lower light intensity. Variation in temperature modified the light effect and vice versa, in a character-dependent manner. More specifically, square and boll dry weights, as well as seed cotton yield per plant, were highest in high light combined with low temperature, where the most and heaviest bolls were produced. But flower production was favoured by high light and high temperature, suggesting increased boll retention at low temperature, especially when combined with low light. Low temperature and high light also maximized lint percentage.Fibres were shortest in the high temperature–high light regime, where fibre strength, micronaire index and maturity ratio were at a maximum. However, the finest and the most uniform fibres were produced when high light was combined with low temperature.Cultivar differences were significant mainly in leaf area and dry matter production at flowering.


Sign in / Sign up

Export Citation Format

Share Document