scholarly journals THREE-DIMENSIONAL HYDRODYNAMICAL SIMULATIONS OF THE SUPERNOVAE-DRIVEN GAS LOSS IN THE DWARF SPHEROIDAL GALAXY URSA MINOR

2015 ◽  
Vol 805 (2) ◽  
pp. 109 ◽  
Author(s):  
A. Caproni ◽  
G. A. Lanfranchi ◽  
A. Luiz da Silva ◽  
D. Falceta-Gonçalves
2020 ◽  
Vol 15 (S359) ◽  
pp. 117-118
Author(s):  
Anderson Caproni ◽  
Gustavo Amaral Lanfranchi

AbstractIn this work, we performed two distinct non-cosmological, three-dimensional hydrodynamic simulations that evolved the gas component of a galaxy similar to the classical dwarf spheroidal galaxy Ursa Minor. Both simulations take into account types II and Ia supernovae feedback constrained by chemical evolution models, while ram-pressure stripping mechanism is added into one of them considering an intergalactic medium and a galactic velocity that resemble what is observed nowadays for the Ursa Minor galaxy. Our results show no difference in the amount of gas left inside the galaxy until 400 Myr of evolution. Moreover, the ram-pressure wind was stalled and inverted by thermal pressure of the interstellar medium and supernovae feedback during the same interval.


2018 ◽  
Vol 14 (S344) ◽  
pp. 49-52
Author(s):  
Anderson Caproni ◽  
Gustavo A. Lanfranchi ◽  
Gabriel H. Campos Baião ◽  
Grzegorz Kowal ◽  
Diego Falceta-Gonçalves

AbstractDwarf spheroidal galaxies of the Local Group share a similar characteristic nowadays: a low amount of gas in their interiors. In this work, we present results from a three-dimensional hydrodynamical simulation of the gas inside an object with similar characteristics of the Ursa Minor galaxy. We evolved the initial gas distribution over 3 Gyr, considering the effects of the types Ia and II supernovae. The instantaneous supernovae rates were derived from a chemical evolution model applied to spectroscopic data of the Ursa Minor galaxy. Our simulation shows that the amount of gas that is lost varies with time and galactocentric radius. The highest gas-loss rates occurred during the first 600 Myr of evolution. Our results also indicate that types Ia and II supernovae must be essential drivers of the gas loss in Ursa Minor galaxy (and probably in other similar dwarf galaxies).


2020 ◽  
Vol 492 (3) ◽  
pp. 3440-3458 ◽  
Author(s):  
E Sanchis ◽  
G Picogna ◽  
B Ercolano ◽  
L Testi ◽  
G Rosotti

ABSTRACT We predict magnitudes for young planets embedded in transition discs, still affected by extinction due to material in the disc. We focus on Jupiter-sized planets at a late stage of their formation, when the planet has carved a deep gap in the gas and dust distributions and the disc starts to being transparent to the planet flux in the infrared (IR). Column densities are estimated by means of three-dimensional hydrodynamical models, performed for several planet masses. Expected magnitudes are obtained by using typical extinction properties of the disc material and evolutionary models of giant planets. For the simulated cases located at 5.2 au in a disc with a local unperturbed surface density of 127 $\mathrm{g} \, \mathrm{cm}^{-2}$, a 1MJ planet is highly extinct in the J, H, and Kbands, with predicted absolute magnitudes ≥ 50 mag. In the L and Mbands, extinction decreases, with planet magnitudes between 25 and 35 mag. In the Nband, due to the silicate feature on the dust opacities, the expected magnitude increases to ∼40 mag. For a 2MJ planet, the magnitudes in the J, H, and Kbands are above 22 mag, while for the L, M, and Nbands, the planet magnitudes are between 15 and 20 mag. For the 5MJ planet, extinction does not play a role in any IR band, due to its ability to open deep gaps. Contrast curves are derived for the transition discs in CQ Tau, PDS 70, HL Tau, TW Hya, and HD 163296. Planet mass upper limits are estimated for the known gaps in the last two systems.


1997 ◽  
Vol 163 ◽  
pp. 384-387 ◽  
Author(s):  
H.-Th. Janka ◽  
M. Ruffert

AbstractWe have performed three-dimensional hydrodynamical simulations of the coalescence of binary neutron stars taking into account the emission and backreaction of gravitational waves in the Newtonian code based on the “Piecewise Parabolic Method”. The use of the physical equation of state (EOS) of Lattimer & Swesty (1991) allowed us to calculate the production of neutrinos. We evaluated our models for the efficiency of v⊽ annihilation in the surroundings of the coalescing neutron stars. The corresponding energy deposition prior to and during merging turned out to be 2–3 orders of magnitude too small to power a typical γ-ray burst (GRB) with an energy output of ~ (1051/4π) erg/sterad at cosmological distances. Analytical estimates of the subsequent evolution of the disk which possibly surrounds the central black hole showed that even under the most favorable conditions the energy provided by v⊽ → e−e+ → γγ falls short by at least an order of magnitude. We discuss the implications of our results and speculate about possibilities how v⊽ annihilation might still be a viable energy source for GRBs.


2014 ◽  
Vol 10 (S312) ◽  
pp. 137-138
Author(s):  
Guobin Mou

AbstractBy performing three-dimensional hydrodynamical simulations, we show that the Fermi bubbles could be inflated by winds launched from the “past” hot accretion flow in Sgr A*. The parameters of the accretion flow required in the model are consistent with those obtained independently from other observational constraints. The wind parameters are taken from small scale MHD numerical simulations of hot accretion flows.


2008 ◽  
Vol 389 (2) ◽  
pp. 1008-1008 ◽  
Author(s):  
Jesús Zavala ◽  
Pablo F. Velázquez ◽  
Adriano H. Cerqueira ◽  
Gloria M. Dubner

Author(s):  
Clément Baruteau ◽  
Gaylor Wafflard-Fernandez ◽  
Romane Le Gal ◽  
Florian Debras ◽  
Andrés Carmona ◽  
...  

Abstract Predicting how a young planet shapes the gas and dust emission of its parent disc is key to constraining the presence of unseen planets in protoplanetary disc observations. We investigate the case of a 2 Jupiter mass planet that becomes eccentric after migrating into a low-density gas cavity in its parent disc. Two-dimensional hydrodynamical simulations are performed and post-processed by three-dimensional radiative transfer calculations. In our disc model, the planet eccentricity reaches ∼0.25, which induces strong asymmetries in the gas density inside the cavity. These asymmetries are enhanced by photodissociation and form large-scale asymmetries in 12CO J=3→2 integrated intensity maps. They are shown to be detectable for an angular resolution and a noise level similar to those achieved in ALMA observations. Furthermore, the planet eccentricity renders the gas inside the cavity eccentric, which manifests as a narrowing, stretching and twisting of iso-velocity contours in velocity maps of 12CO J=3→2. The planet eccentricity does not, however, give rise to detectable signatures in 13CO and C18O J=3→2 inside the cavity because of low column densities. Outside the cavity, the gas maintains near-circular orbits, and the vertically extended optically thick CO emission displays a four-lobed pattern in integrated intensity maps for disc inclinations $\gtrsim$ 30○. The lack of large and small dust inside the cavity in our model further implies that synthetic images of the continuum emission in the sub-millimetre, and of polarized scattered light in the near-infrared, do not show significant differences when the planet is eccentric or still circular inside the cavity.


2020 ◽  
Vol 637 ◽  
pp. A66 ◽  
Author(s):  
E. Meyer-Hofmeister ◽  
B. F. Liu ◽  
E. Qiao ◽  
R. E. Taam

Context. Cygnus X-1 is a black hole X-ray binary system in which the black hole captures and accretes gas from the strong stellar wind emitted by its supergiant O9.7 companion star. The irradiation of the supergiant star essentially determines the flow properties of the stellar wind and the X-ray luminosity from the system. The results of three-dimensional hydrodynamical simulations of wind-fed X-ray binary systems reported in recent work reveal that the ionizing feedback of the X-ray irradiation leads to the existence of two stable states with either a soft or a hard spectrum. Aims. We discuss the observed radiation of Cygnus X-1 in the soft and hard state in the context of mass flow in the corona and disk, as predicted by the recent application of a condensation model. Methods. The rates of gas condensation from the corona to the disk for Cygnus X-1 are determined, and the spectra of the hard and soft radiation are computed. The theoretical results are compared with the MAXI observations of Cygnus X-1 from 2009 to 2018. In particular, we evaluate the hardness-intensity diagrams (HIDs) for its ten episodes of soft and hard states which show that Cygnus X-1 is distinct in its spectral changes as compared to those found in the HIDs of low-mass X-ray binaries. Results. The theoretically derived values of photon counts and hardness are in approximate agreement with the observed data in the HID. However, the scatter in the diagram is not reproduced. Improved agreement could result from variations in the viscosity associated with clumping in the stellar wind and corresponding changes of the magnetic fields in the disk. The observed dipping events in the hard state may also contribute to the scatter and to a harder spectrum than predicted by the model.


2020 ◽  
Vol 643 ◽  
pp. A21
Author(s):  
Ayumu Kuwahara ◽  
Hiroyuki Kurokawa

Context. Pebble accretion is among the major theories of planet formation. Aerodynamically small particles, called pebbles, are highly affected by the gas flow. A growing planet embedded in a protoplanetary disk induces three-dimensional (3D) gas flow. In our previous work, Paper I, we focused on the shear regime of pebble accretion and investigated the influence of planet-induced gas flow on pebble accretion. In Paper I, we found that pebble accretion is inefficient in the planet-induced gas flow compared to that of the unperturbed flow, particularly when St ≲ 10−3, where St is the Stokes number. Aims. Following on the findings of Paper I, we investigate the influence of planet-induced gas flow on pebble accretion. We did not consider the headwind of the gas in Paper I. Here, we extend our study to the headwind regime of pebble accretion. Methods. Assuming a nonisothermal, inviscid sub-Keplerian gas disk, we performed 3D hydrodynamical simulations on the spherical polar grid hosting a planet with the dimensionless mass, m = RBondi∕H, located at its center, where RBondi and H are the Bondi radius and the disk scale height, respectively. We then numerically integrated the equation of motion for pebbles in 3D using hydrodynamical simulation data. Results. We first divided the planet-induced gas flow into two regimes: flow-shear and flow-headwind. In the flow-shear regime, where the planet-induced gas flow has a vertically rotational symmetric structure, we find that the outcome is identical to what we obtained in Paper I. In the flow-headwind regime, the strong headwind of the gas breaks the symmetric structure of the planet-induced gas flow. In the flow-headwind regime, we find that the trajectories of pebbles with St ≲ 10−3 in the planet-induced gas flow differ significantly from those of the unperturbed flow. The recycling flow, where gas from the disk enters the gravitational sphere at low latitudes and exits at high latitudes, gathers pebbles around the planet. We derive the flow transition mass analytically, mt, flow, which discriminates between the flow-headwind and flow-shear regimes. From the relation between m, mt, flow and mt, peb, where mt, peb is the transition mass of the accretion regime of pebbles, we classify the results obtained in both Paper I and this study into four groups. In particular, only when the Stokes gas drag law is adopted and m < min(mt, peb, mt, flow), where the accretion and flow regime are both in the headwind regime, the accretion probability of pebbles with St ≲ 10−3 is enhanced in the planet-induced gas flow compared to that of the unperturbed flow. Conclusions. Combining our results with the spacial variety of turbulence strength and pebble size in a disk, we conclude that the planet-induced gas flow still allows for pebble accretion in the early stage of planet formation. The suppression of pebble accretion due to the planet-induced gas flow occurs only in the late stage of planet formation, more specifically, in the inner region of the disk. This may be helpful for explaining the distribution of exoplanets and the architecture of the Solar System, both of which have small inner and large outer planets.


Sign in / Sign up

Export Citation Format

Share Document