Temperature-Dependent Imaginary Part of the Off-Shell Nucleon Self-Energy and the Second Order Correction of Real Part of the Nucleon Self-Energy

1999 ◽  
Vol 31 (3) ◽  
pp. 407-414
Author(s):  
Han Yinlu ◽  
Shen Qingbiao ◽  
Zhuo Yizhong ◽  
Sun Xiuquan
2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Alexandria Costantino ◽  
Sylvain Fichet

Abstract We investigate how quantum dynamics affects the propagation of a scalar field in Lorentzian AdS. We work in momentum space, in which the propagator admits two spectral representations (denoted “conformal” and “momentum”) in addition to a closed-form one, and all have a simple split structure. Focusing on scalar bubbles, we compute the imaginary part of the self-energy ImΠ in the three representations, which involves the evaluation of seemingly very different objects. We explicitly prove their equivalence in any dimension, and derive some elementary and asymptotic properties of ImΠ.Using a WKB-like approach in the timelike region, we evaluate the propagator dressed with the imaginary part of the self-energy. We find that the dressing from loops exponentially dampens the propagator when one of the endpoints is in the IR region, rendering this region opaque to propagation. This suppression may have implications for field-theoretical model-building in AdS. We argue that in the effective theory (EFT) paradigm, opacity of the IR region induced by higher dimensional operators censors the region of EFT breakdown. This confirms earlier expectations from the literature. Specializing to AdS5, we determine a universal contribution to opacity from gravity.


1993 ◽  
Vol 07 (01n03) ◽  
pp. 87-94 ◽  
Author(s):  
M. WEGER ◽  
L. BURLACHKOV

We calculate the self-energy Σ(k, ω) of an electron gas with a Coulomb interaction in a composite 2D system, consisting of metallic layers of thickness d ≳ a 0, where a 0 = ħ2∊1/ me 2 is the Bohr radius, separated by layers with a dielectric constant ∊2 and a lattice constant c perpendicular to the planes. The behavior of the electron gas is determined by the dimensionless parameters k F a 0 and k F c ∊2/∊1. We find that when ∊2/∊1 is large (≈5 or more), the velocity v(k) becomes strongly k-dependent near k F , and v ( k F ) is enhanced by a factor of 5-10. This behavior is similar to the one found by Lindhard in 1954 for an unscreened electron gas; however here we take screening into account. The peak in v(k) is very sharp (δ k/k F is a few percent) and becomes sharper as ∊2/∊1 increases. This velocity renormalization has dramatic effects on the transport properties; the conductivity at low T increases like the square of the velocity renormalization and the resistivity due to elastic scattering becomes temperature dependent, increasing approximately linearly with T. For scattering by phonons, ρ ∝ T 2. Preliminary measurements suggest an increase in v k in YBCO very close to k F .


2003 ◽  
Vol 17 (04n06) ◽  
pp. 842-847
Author(s):  
C. CASTELLANO ◽  
F. CORDERO ◽  
R. CANTELLI ◽  
M. FERRETTI

We report anelastic spectroscopy measurements of La 1-x Ca x MnO 3 performed in order to better characterize the nature of the phase transitions and microscopic lattice relaxation processes present in these materials. A peak in the imaginary part of the elastic susceptibility presents a behaviour typical of inhomogeneous and glass-like systems. We have performed a quantitative analysis calculating the temperature dependent distribution function of the energy barriers of the fluctuations characterizing this nanostructured state.


1997 ◽  
Vol 08 (05) ◽  
pp. 1145-1158
Author(s):  
J. J. Rodríguez-Núñez ◽  
S. Schafroth

We implement the numerical method of summing Green function diagrams on the Matsubara frequency axis for the fluctuation exchange (FLEX) approximation. Our method has previously been applied to the attractive Hubbard model for low density. Here we apply our numerical algorithm to the Hubbard model close to half filling (ρ =0.40), and for T/t = 0.03, in order to study the dynamics of one- and two-particle Green functions. For the values of the chosen parameters we see the formation of three branches which we associate with the two-peak structure in the imaginary part of the self-energy. From the imaginary part of the self-energy we conclude that our system is a Fermi liquid (for the temperature investigated here), since Im Σ( k , ω) ≈ w2 around the chemical potential. We have compared our fully self-consistent FLEX solutions with a lower order approximation where the internal Green functions are approximated by free Green functions. These two approches, i.e., the fully self-consistent and the non-self-consistent ones give different results for the parameters considered here. However, they have similar global results for small densities.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ayele Tulu ◽  
Wubshet Ibrahim

This study deals with natural convection unsteady flow of CNTs − Fe 3 O 4 /water hybrid nanofluids due to stretching surface embedded in a porous medium. Both hybrid nanoparticles of SWCNTs − Fe 3 O 4 and MWCNTs − Fe 3 O 4 are used with water as base fluid. Effects of hybrid nanoparticles volume friction, second-order velocity slip condition, and temperature-dependent viscosity are investigated. The governing problem of flow is solved numerically employing spectral quasilinearization method (SQLM). The results are presented and discussed via embedded parameters using graphs and tables. The results disclose that the thermal conductivity of CNTs − Fe 3 O 4 / H 2 O hybrid nanofluids is higher than that of CNTs − H 2 O nanofluids with higher value of hybrid nanoparticle volume fraction. Also, the results show that momentum boundary layer reduces while the thermal boundary layer gros with higher values of temperature-dependent viscosity and second-order velocity slip parameters. The skin friction coefficient improves, and the local heat transfer rate decreases with higher values of nanoparticle volume fraction, temperature-dependent viscosity, and second-order velocity slip parameters. Furthermore, more skin friction coefficients and lower local heat transfer rate are reported in the CNTs − Fe 3 O 4 / H 2 O hybrid nanofluid than in the CNTs − H 2 O nanofluid. Thus, the obtained results are promising for the application of hybrid nanofluids in the nanotechnology and biomedicine sectors.


Sign in / Sign up

Export Citation Format

Share Document