Two-Dimensional Photoacoustic Imaging of Blood Vessel Networks within Biological Tissues

2006 ◽  
Vol 23 (2) ◽  
pp. 512-515 ◽  
Author(s):  
Su Yi-Xiong ◽  
Ruikang K Wang ◽  
Zhang Fan ◽  
Yao Jian-Quan
2006 ◽  
Author(s):  
Yixiong Su ◽  
Ruikang K. Wang ◽  
Fan Zhang ◽  
Jianquan Yao

Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 429
Author(s):  
Yuhling Wang ◽  
Tsung-Sheng Chu ◽  
Yan-Ren Lin ◽  
Chia-Hui Tsao ◽  
Chia-Hua Tsai ◽  
...  

Understanding the relationship between brain function and natural behavior remains a significant challenge in neuroscience because there are very few convincing imaging/recording tools available for the evaluation of awake and freely moving animals. Here, we employed a miniaturized head-mounted scanning photoacoustic imaging (hmPAI) system to image real-time cortical dynamics. A compact photoacoustic (PA) probe based on four in-house optical fiber pads and a single custom-made 48-MHz focused ultrasound transducer was designed to enable focused dark-field PA imaging, and miniature linear motors were included to enable two-dimensional (2D) scanning. The total dimensions and weight of the proposed hmPAI system are only approximately 50 × 64 × 48 mm and 58.7 g (excluding cables). Our ex vivo phantom experimental tests revealed that a spatial resolution of approximately 0.225 mm could be achieved at a depth of 9 mm. Our in vivo results further revealed that the diameters of cortical vessels draining into the superior sagittal sinus (SSS) could be clearly imaged and continuously observed in both anesthetized rats and awake, freely moving rats. Statistical analysis showed that the full width at half maximum (FWHM) of the PA A-line signals (relative to the blood vessel diameter) was significantly increased in the selected SSS-drained cortical vessels of awake rats (0.58 ± 0.17 mm) compared with those of anesthetized rats (0.31 ± 0.09 mm) (p < 0.01, paired t-test). In addition, the number of pixels in PA B-scan images (relative to the cerebral blood volume (CBV)) was also significantly increased in the selected SSS-drained blood vessels of awake rats (107.66 ± 23.02 pixels) compared with those of anesthetized rats (81.99 ± 21.52 pixels) (p < 0.01, paired t-test). This outcome may result from a more active brain in awake rats than in anesthetized rats, which caused cerebral blood vessels to transport more blood to meet the increased nutrient demand of the tissue, resulting in an obvious increase in blood vessel volume. This hmPAI system was further validated for utility in the brains of awake and freely moving rats, showing that their natural behavior was unimpaired during vascular imaging, thereby providing novel opportunities for studies of behavior, cognition, and preclinical models of brain diseases.


2005 ◽  
Author(s):  
Yasser H. El-Sharkawy ◽  
Yehia Badr ◽  
Mahmoud Hassan

2010 ◽  
Vol 76 ◽  
pp. 125-132 ◽  
Author(s):  
Akio Kishida ◽  
Seiichi Funamoto ◽  
Jun Negishi ◽  
Yoshihide Hashimoto ◽  
Kwangoo Nam ◽  
...  

Natural tissue, especially autologous tissue is one of ideal materials for tissue regeneration. Decellularized tissue could be assumed as a second choice because the structure and the mechanical properties are well maintained. Decellularized human tissues, for instance, heart valve, blood vessel, and corium, have already been developed and applied clinically. Nowadays, decellularized porcine tissues are also investigated. These decellularized tissues were prepared by detergent treatment. The detergent washing is easy but sometime it has problems. We have developed the novel decellularization method, which applied the high-hydrostatic pressure (HHP). As the tissue set in the pressurizing chamber is treated uniformly, the effect of the high-hydrostatic pressurization does not depend on the size of tissue. We have reported the HHP decellularization of heart valve, blood vessel, bone, and cornea. Furthermore, HHP treatments are reported to have the ability of the extinction of bacillus and the inactivation of virus. So, the HHP treatment is also expected as the sterilization method. We are investigating efficient processes of decellularization and recellularization of biological tissues to have bioscaffolds keeping intact structure and biomechanical properties. Our recent studies on tissue engineering using HHP decellularized tissue will be reported here.


Nano Research ◽  
2016 ◽  
Vol 10 (4) ◽  
pp. 1234-1248 ◽  
Author(s):  
Mei Chen ◽  
Shuzhen Chen ◽  
Chengyong He ◽  
Shiguang Mo ◽  
Xiaoyong Wang ◽  
...  

2017 ◽  
Vol 14 (127) ◽  
pp. 20160992 ◽  
Author(s):  
B. Zeller-Plumhoff ◽  
T. Roose ◽  
G. F. Clough ◽  
P. Schneider

The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo . Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange.


2020 ◽  
Vol 21 (11) ◽  
pp. 3790
Author(s):  
Greg Hutchings ◽  
Krzysztof Janowicz ◽  
Lisa Moncrieff ◽  
Claudia Dompe ◽  
Ewa Strauss ◽  
...  

Neovascularization and angiogenesis are vital processes in the repair of damaged tissue, creating new blood vessel networks and increasing oxygen and nutrient supply for regeneration. The importance of Adipose-derived Mesenchymal Stem Cells (ASCs) contained in the adipose tissue surrounding blood vessel networks to these processes remains unknown and the exact mechanisms responsible for directing adipogenic cell fate remain to be discovered. As adipose tissue contains a heterogenous population of partially differentiated cells of adipocyte lineage; tissue repair, angiogenesis and neovascularization may be closely linked to the function of ASCs in a complex relationship. This review aims to investigate the link between ASCs and angiogenesis/neovascularization, with references to current studies. The molecular mechanisms of these processes, as well as ASC differentiation and proliferation are described in detail. ASCs may differentiate into endothelial cells during neovascularization; however, recent clinical trials have suggested that ASCs may also stimulate angiogenesis and neovascularization indirectly through the release of paracrine factors.


Sign in / Sign up

Export Citation Format

Share Document