scholarly journals The Proliferation and Differentiation of Adipose-Derived Stem Cells in Neovascularization and Angiogenesis

2020 ◽  
Vol 21 (11) ◽  
pp. 3790
Author(s):  
Greg Hutchings ◽  
Krzysztof Janowicz ◽  
Lisa Moncrieff ◽  
Claudia Dompe ◽  
Ewa Strauss ◽  
...  

Neovascularization and angiogenesis are vital processes in the repair of damaged tissue, creating new blood vessel networks and increasing oxygen and nutrient supply for regeneration. The importance of Adipose-derived Mesenchymal Stem Cells (ASCs) contained in the adipose tissue surrounding blood vessel networks to these processes remains unknown and the exact mechanisms responsible for directing adipogenic cell fate remain to be discovered. As adipose tissue contains a heterogenous population of partially differentiated cells of adipocyte lineage; tissue repair, angiogenesis and neovascularization may be closely linked to the function of ASCs in a complex relationship. This review aims to investigate the link between ASCs and angiogenesis/neovascularization, with references to current studies. The molecular mechanisms of these processes, as well as ASC differentiation and proliferation are described in detail. ASCs may differentiate into endothelial cells during neovascularization; however, recent clinical trials have suggested that ASCs may also stimulate angiogenesis and neovascularization indirectly through the release of paracrine factors.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Seung-Cheol Lee ◽  
Yoo-Jung Lee ◽  
Min Kyoung Shin ◽  
Jung-Suk Sung

Human mesenchymal stem cells derived from adipose tissue (hADMSCs) are a desirable candidate in regenerative medicine. hADMSCs secrete growth factors, cytokines, and chemokines and also express various receptors that are important in cell activation, differentiation, and migration to injured tissue. We showed that the expression level of chemokine receptor CXCR6 was significantly increased by ~2.5-fold in adipogenic-differentiated cells (Ad), but not in osteogenic-differentiated cells (Os) when compared with hADMSCs. However, regulation of CXCR6 expression on hADMSCs by using lentiviral particles did not affect the differentiation potential of hADMSCs. Increased expression of CXCR6 on Ad was mediated by both receptor recycling, which was in turn regulated by secretion of CXCL16, and de novo synthesis. The level of soluble CXCL16 was highly increased in both Ad and Os in particular, which inversely correlates with the expression on a transmembrane-bound form of CXCL16 that is cleaved by disintegrin and metalloproteinase. We concluded that the expression of CXCR6 is regulated by receptor degradation or recycling when it is internalized by interaction with CXCL16 and by de novo synthesis of CXCR6. Overall, our study may provide an insight into the molecular mechanisms of the CXCR6 reciprocally expressed on differentiated cells from hADMSCs.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 255 ◽  
Author(s):  
Miruna Mihaela Micheu ◽  
Alina Ioana Scarlatescu ◽  
Alexandru Scafa-Udriste ◽  
Maria Dorobantu

Despite significant progress in treating ischemic cardiac disease and succeeding heart failure, there is still an unmet need to develop effective therapeutic strategies given the persistent high-mortality rate. Advances in stem cell biology hold great promise for regenerative medicine, particularly for cardiac regeneration. Various cell types have been used both in preclinical and clinical studies to repair the injured heart, either directly or indirectly. Transplanted cells may act in an autocrine and/or paracrine manner to improve the myocyte survival and migration of remote and/or resident stem cells to the site of injury. Still, the molecular mechanisms regulating cardiac protection and repair are poorly understood. Stem cell fate is directed by multifaceted interactions between genetic, epigenetic, transcriptional, and post-transcriptional mechanisms. Decoding stem cells’ “panomic” data would provide a comprehensive picture of the underlying mechanisms, resulting in patient-tailored therapy. This review offers a critical analysis of omics data in relation to stem cell survival and differentiation. Additionally, the emerging role of stem cell-derived exosomes as “cell-free” therapy is debated. Last but not least, we discuss the challenges to retrieve and analyze the huge amount of publicly available omics data.


2020 ◽  
Author(s):  
Pedro Madrigal ◽  
Siim Pauklin ◽  
Kim Jee Goh ◽  
Rodrigo Grandy ◽  
Anna Osnato ◽  
...  

AbstractMost mammalian stem cells undergo cellular division during their differentiation to produce daughter cells with a new cellular identity. However, the cascade of epigenetic events and molecular mechanisms occurring between successive cell divisions upon differentiation have not yet been described in detail due to technical limitations. Here, we address this question by taking advantage of the Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) reporter to develop a culture system allowing the differentiation of human Embryonic Stem Cells (hESCs) synchronised for their cell cycle. Using this approach, we have assessed the epigenome and transcriptome dynamics during the first two divisions leading to definitive endoderm. We first observed that transcription of key markers of differentiation occurs before division suggesting that differentiation is initiated during the progression of cell cycle. Furthermore, ATAC-seq shows a major decrease in chromatin accessibility after pluripotency exit indicating that the first event of differentiation is the inhibition of alternative cell fate. In addition, using digital genomic footprinting we identified novel cell cycle-specific transcription factors with regulatory potential in endoderm specification. Of particular interest, Activator protein 1 (AP-1) controlled p38/MAPK signalling seems to be necessary for blocking endoderm shifting cell fate toward mesoderm lineage. Finally, histone modifications analyses suggest a temporal order between different marks. We can also conclude that enhancers are dynamically and rapidly established / decommissioned between different cell cycle upon differentiation. Overall, these data not only reveal key the successive interplays between epigenetic modifications during differentiation but also provide a valuable resource to investigate novel mechanisms in germ layer specification.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Zeljko Bosnjak ◽  
Bassam Wakim ◽  
Yasheng Yan ◽  
Scott Canfield ◽  
Chika Kikuchi ◽  
...  

Growing evidence from animal studies shows that adipose tissue-derived stem cells (ASCs) improve cardiac function of infarcted hearts. It is commonly accepted that therapeutic potential of ASCs may depend more on their paracrine effects than differentiation potential. The underlying mechanisms remain unclear. However, most data regarding paracrine factors were obtained from ASCs cultured in normoxic condition (20%). The present study investigated how in vivo physiological oxygen (4%) tension influenced the secretome of ASCs. ASCs were isolated from three 8-week-old BALB/c mice. ASCs were confirmed by the expression of stem cell markers (CD44 and CD90) and their capacity to differentiate into adipocytes and osteocytes. ASCs at passage 5 were cultured in normoxic (20%) and lower oxygen (4%) incubators and conditioned for 24 h (3 cultures/group). The conditioned media (CM) from ASCs were subjected to trypsin digestion followed by analysis using automated nano-flow liquid chromatography tandem mass spectrometry. The collected LC/MS/MS data were searched against the rodent subset of the Uniprot database and the total proteomes were identified. The data were from 6 technical replicates. A total of 28 proteins were identified and 7 proteins were unique to normoxic CM. Of the 21 common proteins detected in both normoxic and lower oxygen CM, 9 were extracellular matrix proteins. The abundance of 6 of these proteins (e.g., collagen I and laminin) differed noticeably between normoxic and lower oxygen CM. In addition, a greater amount of cytokine CXCL5 and matrix metalloproteinase (MMP)-2 was detected in lower oxygen CM than in normoxic CM while tissue inhibitor of metalloproteinase (TIMP)-1 was only detected in normoxic CM. These results indicate that lower oxygen tension differentially regulates the secretome of ASCs. Extrapolating the results of this study to the in vivo setting, it would appear that injected ASCs may exert their anti-fibrotic and trophic effect by 1) directly regulating the balance of MMP/TIMP production and preventing collagen accumulation in ischemic hearts to decrease fibrosis, and 2) secreting trophic factors including CXCL5. These data suggest that proteomic analysis of CM is useful for elucidation of the paracrine effect of ASCs in vivo.


2020 ◽  
Vol 29 ◽  
pp. 096368972090756
Author(s):  
Hong-Meng Chuang ◽  
Mao-Hsuan Huang ◽  
Yu-Shuan Chen ◽  
Horng-Jyh Harn

Stem cell transplantation is a fast-developing technique, which includes stem cell isolation, purification, and storage, and it is in high demand in the industry. In addition, advanced applications of stem cell transplantation, including differentiation, gene delivery, and reprogramming, are presently being studied in clinical trials. In contrast to somatic cells, stem cells are self-renewing and have the ability to differentiate; however, the molecular mechanisms remain unclear. SOX2 (sex-determining region Y [ SRY]-b ox 2) is one of the well-known reprogramming factors, and it has been recognized as an oncogene associated with cancer induction. The exclusion of SOX2 in reprogramming methodologies has been used as an alternative cancer treatment approach. However, the manner by which SOX2 induces oncogenic effects remains unclear, with most studies demonstrating its regulation of the cell cycle and no insight into the maintenance of cellular stemness. For controlling certain critical pathways, including Shh and Wnt pathways, SOX2 is considered irreplaceable and is required for the normal functioning of stem cells, particularly neural stem cells. In this report, we discussed the functions of SOX2 in both stem and cancer cells, as well as how this powerful regulator can be used to control cell fate.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3361-3361
Author(s):  
Charlie Mantel ◽  
Sara Rhorabough ◽  
Ying Guo ◽  
Man-Ryul Lee ◽  
Myung-Kwan Han ◽  
...  

Abstract Ex-vivo expansion of human HSC prior to bone marrow transplantation is still an unrealized goal that could greatly extend the usefulness of this mainstay strategy for treating numerous human hematologic diseases. The safety of this process for potential use in humans depends in large part on the maintenance of karyotypic stability of HSC during expansion, a lack of which could contribute to serious, even fatal, complications such as cancer, and could also contribute to engraftment failure. The spindle checkpoint and its linkage to apoptosis initiation is one of the most important cellular processes that helps maintain chromosomal stability in rapidly proliferating cell populations by removing aneuploid and karyotypically abnormal cells via activation of cell death programs. Detailed understanding of the molecular regulation of this vital cell cycle checkpoint is important to maximize safety of in-vitro HSC expansion techniques. It is widely accepted that mammalian cells enter the next G1-phase with 4N DNA after slippage from prolonged drug-induced mitotic block caused by activation of the transient spindle checkpoint that it is from this state that polyploid/aneuploid cells initiate apoptosis. However, definitive biochemical evidence for G1 is scarce or unconvincing; in part because of methods of protein extraction required for immunoblot analysis that cannot take into account the cell cycle heterogeneity of cell cultures. We used single-cell-intracellular-flow-cytometric analysis to define important factors determining cell fate after mitotic slippage. Results from human and mouse embryonic stem cells that reenter polyploid cell cycles are compared to human somatic hematopoietic cells that die after MS. We now report for the first time that phosphorylation status of pRb, p53, CDK1, and cyclin B1 levels are important for cell fate/apoptosis decision in mitotic-slippage cells, which occurs in a unique, intervening, non-G1, tetraploid subphase. Hyperphosphorylated Rb was extremely abundant in mitotic-slippage cells, a cell signaling event usually associated with early G1-S phase transition. P53 was phosphorylated at sites known to be associated with apoptosis regulation. Cyclin A and B1 were undetectable in mitotic slippage cells; yet, CDK1 was phosphorylated at sites typically associated with its activation. Evidence is also presented raising the possibility of cyclin B1-independent CDK1 activity in mitotic-slippage cells. These findings challenge the current models of spindle checkpoint-apoptosis linkages. Our new model could have important implications for methods to maintain karyotypic stability during ex-vivo HSC expansion.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. SCI-43-SCI-43
Author(s):  
Lewis C. Cantley

Abstract Recent studies have suggested not only that stem cells have different metabolic requirements than terminally differentiated cells, but also that metabolic intermediates may play a role in the maintenance of stem cells. It has long been clear that changes in acetylation and methylation of histones, as well as methylation of DNA play critical roles in deciding cell fate. The availability of critical intermediates in metabolism, especially S-adenosylmethionine (SAM), acetyl-CoA, nicotinamide adenine dinucleotide (NAD) and a-ketoglutarate play critical roles in modulating acetylation and methylation of histones and methylation of DNA. In the course of evaluating an unusual requirement of threonine (Thr) for the growth of murine embryonic stem cells, we found that metabolism of Thr to glycine (Gly) and the subsequent use of the methyl group of Gly for converting homocysteine to methionine is critical for maintaining high levels of SAM and low levels of S-adenosyl-homocysteine. Importantly, depletion of Thr from the media resulted in decreased tri-methylation of histone H3 lysine-4 (H3K4me3), leading to slowed growth and increased differentiation. Thus, abundance of SAM appears to influence H3K4me3, providing a possible mechanism by which modulation of a metabolic pathway might influence stem cell fate. Demethylation of histones and DNA can also be controlled by metabolic intermediates. Mutated forms of isocitrate dehydrogenase 1 (IDH1) and IDH2 that drive acute myeloid leukemia (AML) and other cancers, produce an oncometabolite (2-hydrogyglutarate) that can compete with the a-ketoglutarate requirement for enzymes involved in hydroxy-methylation and subsequent demethylation of DNA and histones. Recent studies indicate that 2-hydroxyglutarate plays a role in blocking differentiation of cancer cells. These and other observations linking intermediates in metabolism to stem cell maintenance will be discussed. Disclosures Cantley: Agios Pharmaceuticals: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.


2020 ◽  
Vol 15 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Qichang Yang ◽  
Jing Wu ◽  
Jian Zhao ◽  
Tianyi Xu ◽  
Ping Han ◽  
...  

Background: Previous studies indicated that the cell fate of neural stem cells (NSCs) after differentiation is determined by Smek1, one isoform of suppressor of Mek null (Smek). Smek deficiency prevents NSCs from differentiation, thus affects the development of nervous system. In recent years, lncRNAs have been found to participate in numerous developmental and biological pathways. However, the effects of knocking out Smek on the expression profiles of lncRNAs during the differentiation remain unknown. Objective: This study is to explore the expression profiles of lncRNAs and their possible function during the differentiation from Smek1/2 knockout NSCs. Methods: We obtained NSCs from the C57BL/6J mouse fetal cerebral cortex. One group of NSCs was from wildtype mouse (WT group), while another group was from knocked out Smek1/2 (KO group). Results: By analyzing the RNA-Seq data, we found that after knocking out Smek1/2, the expression profiles of mRNAs and lncRNAs revealed significant changes. Analyses indicated that these affected mRNAs have connections with the pathway network for the differentiation and proliferation of NSCs. Furthermore, we performed a co-expression network analysis on the differentially expressed mRNAs and lncRNAs, which helped reveal the possible regulatory rules of lncRNAs during the differentiation after knocking out Smek1/2. Conclusion: By comparing group WT with KO, we found 366 differentially expressed mRNAs and 12 lncRNAs. GO and KEGG enrichment analysis on these mRNAs suggested their relationships with differentiation and proliferation of NSCs. Some of these mRNAs and lncRNAs have been verified to play regulatory roles in nervous system. Analyses on the co-expression network also indicated the possible functions of affected mRNAs and lncRNAs during NSCs differentiation after knocking out Smek1/2.


2019 ◽  
Vol 19 (3) ◽  
pp. 233-246 ◽  
Author(s):  
Antara Banerjee ◽  
Ganesan Jothimani ◽  
Suhanya Veronica Prasad ◽  
Francesco Marotta ◽  
Surajit Pathak

Background:The conserved Wnt/β-catenin signaling pathway is responsible for multiple functions including regulation of stem cell pluripotency, cell migration, self-renewability and cell fate determination. This signaling pathway is of utmost importance, owing to its ability to fuel tissue repair and regeneration of stem cell activity in diverse organs. The human adult stem cells including hematopoietic cells, intestinal cells, mammary and mesenchymal cells rely on the manifold effects of Wnt pathway. The consequences of any dysfunction or manipulation in the Wnt genes or Wnt pathway components result in specific developmental defects and may even lead to cancer, as it is often implicated in stem cell control. It is absolutely essential to possess a comprehensive understanding of the inhibition and/ or stimulation of the Wnt signaling pathway which in turn is implicated in determining the fate of the stem cells.Results:In recent years, there has been considerable interest in the studies associated with the implementation of small molecule compounds in key areas of stem cell biology including regeneration differentiation, proliferation. In support of this statement, small molecules have unfolded as imperative tools to selectively activate and inhibit specific developmental signaling pathways involving the less complex mechanism of action. These compounds have been reported to modulate the core molecular mechanisms by which the stem cells regenerate and differentiate.Conclusion:This review aims to provide an overview of the prevalent trends in the small molecules based regulation of stem cell fate via targeting the Wnt signaling pathway.


2010 ◽  
Vol 298 (2) ◽  
pp. H415-H423 ◽  
Author(s):  
Masao Takahashi ◽  
Etsu Suzuki ◽  
Shigeyoshi Oba ◽  
Hiroaki Nishimatsu ◽  
Kenjiro Kimura ◽  
...  

Subcutaneous adipose tissue contains a lot of stem cells [adipose-derived stem cells (ASCs)] that can differentiate into a variety of cell lineages. In this study, we isolated ASCs from Wistar rats and examined whether ASCs would efficiently differentiate into vascular endothelial cells (ECs) in vitro. We also administered ASCs in a wire injury model of rat femoral artery and examined their effects. ASCs expressed CD29 and CD90, but not CD34, suggesting that ASCs resemble bone marrow-derived mesenchymal stem cells. When induced to differentiate into ECs with endothelial growth medium (EGM), ASCs expressed Flt-1, but not Flk-1 or mature EC markers such as CD31 and vascular endothelial cadherin. ASCs produced angiopoietin-1 when they were cultured in EGM. ASCs stimulated the migration of EC, as assessed by chemotaxis assay. When ASCs that were cultured in EGM were injected in the femoral artery, the ASCs potently and significantly inhibited neointimal formation without being integrated in the endothelial layer. EGM-treated ASCs significantly suppressed neointimal formation even when they were administered from the adventitial side. ASC administration significantly promoted endothelial repair. These results suggested that although ASCs appear to have little capacity to differentiate into mature ECs, ASCs have the potential to secrete paracrine factors that stimulate endothelial repair. Our results also suggested that ASCs inhibited neointimal formation via their paracrine effect of stimulation of EC migration in situ rather than the direct integration into the endothelial layer.


Sign in / Sign up

Export Citation Format

Share Document