A large-area 15 nm graphene nanoribbon array patterned by a focused ion beam

2014 ◽  
Vol 25 (13) ◽  
pp. 135301 ◽  
Author(s):  
Ye Zhang ◽  
Chao Hui ◽  
Rujie Sun ◽  
Kang Li ◽  
Ke He ◽  
...  
2013 ◽  
Vol 1530 ◽  
Author(s):  
A. Bendavid ◽  
L. Wieczorek ◽  
R. Chai ◽  
J. S. Cooper ◽  
B. Raguse

ABSTRACTA large area nanogap electrode fabrication method combinig conventional lithography patterning with the of focused ion beam (FIB) is presented. Lithography and a lift-off process were used to pattern 50 nm thick platinum pads having an area of 300 μm × 300 μm. A range of 30-300 nm wide nanogaps (length from 300 μm to 10 mm ) were then etched using an FIB of Ga+ at an acceleration voltage of 30 kV at various beam currents. An investigation of Ga+ beam current ranging between 1-50 pA was undertaken to optimise the process for the current fabrication method. In this study, we used Monte Carlo simulation to calculate the damage depth in various materials by the Ga+. Calculation of the recoil cascades of the substrate atoms are also presented. The nanogap electrodes fabricated in this study were found to have empty gap resistances exceeding several hundred MΩ. A comparison of the gap length versus electrical resistance on glass substrates is presented. The results thus outline some important issues in low-conductance measurements. The proposed nanogap fabrication method can be extended to various sensor applications, such as chemical sensing, that employ the nanogap platform. This method may be used as a prototype technique for large-scale fabrication due to its simple, fast and reliable features.


2019 ◽  
Vol 8 (3-4) ◽  
pp. 233-240
Author(s):  
Roberto Fallica

Abstract There are a growing number of applications where three-dimensional patterning is needed for the fabrication of micro- and nanostructures. Thus far, grayscale lithography is the main technique for obtaining a thickness gradient in a resist material that is exploited for pattern transfer by anisotropic etch. However, truly three-dimensional structures can only be produced by unconventional lithography methods such as direct laser writing, focused ion beam electrodeposition, colloidal sphere lithography, and tilted multiple-pass projection lithography, but at the cost of remarkable complexity and lengthiness. In this work, the three-dimensional shape of light, which is formed by Talbot effect diffraction, was exploited to produce inherently three-dimensional patterns in a photosensitive polymer. Using light in the soft X-ray wavelength, periodic three-dimensional structures of lateral period 600 nm were obtained. The position at which the sample has to be located to be in the Fresnel regime was simulated using an analytical implementation of the Fresnel integrals approach. Exploiting the light shape forming in diffraction effects thus enables the patterning of high-resolution three-dimensional nanostructures over a large area and with a single exposure pass – which would be otherwise impossible with conventional lithographic methods.


2005 ◽  
Vol 04 (03) ◽  
pp. 269-286 ◽  
Author(s):  
F. WATT ◽  
A. A. BETTIOL ◽  
J. A. VAN KAN ◽  
E. J. TEO ◽  
M. B. H. BREESE

To overcome the diffraction constraints of traditional optical lithography, the next generation lithographies (NGLs) will utilize any one or more of EUV (extreme ultraviolet), X-ray, electron or ion beam technologies to produce sub-100 nm features. Perhaps the most under-developed and under-rated is the utilization of ions for lithographic purposes. All three ion beam techniques, FIB (Focused Ion Beam), Proton Beam Writing (p-beam writing) and Ion Projection Lithography (IPL) have now breached the technologically difficult 100 nm barrier, and are now capable of fabricating structures at the nanoscale. FIB, p-beam writing and IPL have the flexibility and potential to become leading contenders as NGLs. The three ion beam techniques have widely different attributes, and as such have their own strengths, niche areas and application areas. The physical principles underlying ion beam interactions with materials are described, together with a comparison with other lithographic techniques (electron beam writing and EUV/X-ray lithography). IPL follows the traditional lines of lithography, utilizing large area masks through which a pattern is replicated in resist material which can be used to modify the near-surface properties. In IPL, the complete absence of diffraction effects coupled with ability to tailor the depth of ion penetration to suit the resist thickness or the depth of modification are prime characteristics of this technique, as is the ability to pattern a large area in a single brief irradiation exposure without any wet processing steps. p-beam writing and FIB are direct write (maskless) processes, which for a long time have been considered too slow for mass production. However, these two techniques may have some distinct advantages when used in combination with nanoimprinting and pattern transfer. FIB can produce master stamps in any material, and p-beam writing is ideal for producing three-dimensional high-aspect ratio metallic stamps of precise geometry. The transfer of large scale patterns using nanoimprinting represents a technique of high potential for the mass production of a new generation of high area, high density, low dimensional structures. Finally a cross section of applications are chosen to demonstrate the potential of these new generation ion beam nanolithographies.


2004 ◽  
Vol 10 (S02) ◽  
pp. 1162-1163
Author(s):  
A. Anciso ◽  
P.J. Jones ◽  
R.B. Irwin

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Wang ◽  
Steven Randolph ◽  
Qian Wu ◽  
Aurélien Botman ◽  
Jenna Schardt ◽  
...  

AbstractCorrelative light and electron microscopy (CLEM) is a powerful tool for defining the ultrastructural context of molecularly-labeled biological specimens, particularly when superresolution fluorescence microscopy (SRM) is used for CLEM. Current CLEM, however, is limited by the stark differences in sample preparation requirements between the two modalities. For CLEM using SRM, the small region of interest (ROI) of either or both modalities also leads to low success rate and imaging throughput. To overcome these limitations, here we present a CLEM workflow based on a novel focused ion beam/scanning electron microscope (FIB/SEM) compatible with common SRM for imaging biological specimen with ultrahigh 3D resolution and improved imaging throughput. By using a reactive oxygen source in a plasma FIB (PFIB) and a rotating sample stage, the novel FIB/SEM was able to achieve several hundreds of micrometer large area 3D analysis of resin embedded cells through a process named oxygen serial spin mill (OSSM). Compared with current FIB mechanisms, OSSM offers gentle erosion, highly consistent slice thickness, reduced charging during SEM imaging, and improved SEM contrast without increasing the dose of post-staining and fixation. These characteristics of OSSM-SEM allowed us to pair it with interferometric photoactivated localization microscopy (iPALM), a recent SRM technique that affords 10–20 nm isotropic spatial resolution on hydrated samples, for 3D CLEM imaging. We demonstrate a CLEM workflow generalizable to using other SRM strategies using mitochondria in human osteosarcoma (U2OS) cells as a model system, where immunostained TOM20, a marker for the mitochondrial outer membrane, was used for iPALM. Owing to the large scan area of OSSM-SEM, it is now possible to select as many FOVs as needed for iPALM and conveniently re-locate them in EM, this improving the imaging throughput. The significantly reduced dose of post-fixation also helped to better preserve the sample ultrastructures as evidenced by the excellent 3D registration between OSSM-SEM and iPALM images and by the accurate localization of TOM20 (by iPALM) to the peripheries of mitochondria (by OSSM-SEM). These advantages make OSSM-SEM an ideal modality for CLEM applications. As OSSM-SEM is still in development, we also discuss some of the remaining issues and the implications to biological imaging with SEM alone or with CLEM.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2182 ◽  
Author(s):  
Chiara Valsecchi ◽  
Luis Enrique Gomez Armas ◽  
Jacson Weber de Menezes

Several fabrication techniques are recently used to produce a nanopattern for sensing, as focused ion beam milling (FIB), e-beam lithography (EBL), nanoimprinting, and soft lithography. Here, interference lithography is explored for the fabrication of large area nanohole arrays in metal films as an efficient, flexible, and scalable production method. The transmission spectra in air of the 1 cm2 substrate were evaluated to study the substrate behavior when hole-size, periodicity, and film thickness are varied, in order to elucidate the best sample for the most effective sensing performance. The efficiency of the nanohole array was tested for bulk sensing and compared with other platforms found in the literature. The sensitivity of ~1000 nm/RIU, achieved with an array periodicity in the visible range, exceeds near infrared (NIR) performances previously reported, and demonstrates that interference lithography is one of the best alternative to other expensive and time-consuming nanofabrication methods.


Author(s):  
Frank Altmann ◽  
Jan Schischka ◽  
Vinh Van Ngo ◽  
Stacey Stone ◽  
Laurens F. Tz. Kwakman ◽  
...  

Abstract A novel analytical method applying combined electron beam induced current (EBIC) imaging based on scanning electron microscopy (SEM) and focused ion beam (FIB) cross sectioning in a SEM/FIB dualbeam system is presented. The method is demonstrated in several case studies for process characterization and failure analysis of thin film technology based Solar cells, including Silicon (CSG), Cadmium Telluride (CdTe) and Copper Indium Selenide (CIS) absorbers. While existing techniques such as electro-, photoluminescence spectroscopy and lock-in thermography are able to locate the larger, electrically active defects reasonably fast on a large area, the FIB-SEM EBIC system is uniquely capable of detecting sub-micron, sub-surface defects and of analysing these defects in the same system. In combination with a FIB, the localized region of interest can be easily cross sectioned and additional EBIC analysis can be applied for a three dimensional analysis of the p/n junction.


Author(s):  
Michael Wong ◽  
Oleg Sidorov ◽  
Or Haimson ◽  
Roy Goldman ◽  
David Donnet ◽  
...  

Abstract In a previous study, the authors introduced a novel technique of using low-beam energy Gallium Focused Ion Beam to expose a large area of Shallow Trench Isolation (STI) over a Dynamic Ring Oscillator (DRO) incurring virtually no change of its operating frequency. In this paper, the authors further investigate the influence of extended dose delivery of 5 kV Ga+ after the initial exposure of the STI over a DRO on modern 7 nm process. The motivation of this study is to understand the dynamics between the Ga+ ion interaction at lower beam energies on live and functional devices and the failure mechanism of the device from such interaction. The frequency of the DROs after the initial STI exposure at 5 kV exhibits <1% increase. Additional dosage of lowkV exposure was performed over the exposed STI and its effects on the DRO frequency was monitored. Finally TEM analysis of the irradiated DROs will be analyzed to understand the failure mechanism of transistors.


2002 ◽  
Vol 749 ◽  
Author(s):  
H.D. Wanzenboeck ◽  
S. Harasek ◽  
H. Langfischer ◽  
E. Bertagnolli

ABSTRACTChemical vapor deposition (CVD) is a versatile deposition technique for both dielectrics and metals. CVD is based upon the adsorption of a volatile species from the gas phase and the decomposition of the adsorbed molecules on the sample surface resulting in the deposition of solid material. In contrast to thermal CVD or plasma assisted CVD used for large area coatings this work focuses on a method for locally confined deposition. A focused energetic beam is used to provide the necessary activation energy for CVD. With a focused beam material could be deposited locally within a strictly confined area down to the nanometer range. The deposition of silicon oxide microstructures utilizing two precursor gases - siloxane and oxygen - was performed by direct-write nanolithography. For initiating the CVD process energy is introduced by local ion exposure utilizing a scanning focused ion beam (FIB). The influence of the different ion fluxes and the effect of the mixture ratio of precursors were studied. Deliberate changes in the process parameters allowed adjusting the physical properties and the chemical composition of the solid silicon oxide. Process control allows tailoring of material properties according to requirements of the application.


Sign in / Sign up

Export Citation Format

Share Document