scholarly journals Static gauge potential from noncritical strings

2001 ◽  
Vol 2001 (01) ◽  
pp. 017-017 ◽  
Author(s):  
Enrique Álvarez ◽  
Juan José Manjarín
2014 ◽  
Vol 11 (10) ◽  
pp. 1450084
Author(s):  
Gabriel Y. H. Avossevou ◽  
Bernadin D. Ahounou

In this paper we study the stationary scattering problem of the Aharonov–Bohm (AB) effect. To achieve this goal we construct a Hamiltonian from the most general representations of the Heisenberg algebra. Such representations are defined on a non-simply-connected manifold which we set as the flat circular annulus. By means of the von Neumann's self-adjoint extensions formalism, the scattering data are then provided. No solenoid is considered in this paper. The corresponding Hamiltonian is based on a topological quantum degree of freedom inherent in such representations. This variable stands for the magnetic vector gauge potential at quantum level. Our outcomes confirm the topological nature of this effect.


1996 ◽  
Vol 10 (13n14) ◽  
pp. 1695-1705 ◽  
Author(s):  
S. Ansoldi ◽  
A. Aurilia ◽  
E. Spallucci

We study a functional field theory of membranes coupled to a rank-three tensor gauge potential. We show that gauge field radiative corrections lead to membrane condensation which turns the gauge field into a massive spin-0 field. This is the Coleman-Weinberg mechanism for membranes. An analogy is also drawn with a type-II superconductor. The ground state of the system consists of a two-phase medium in which the superconducting background condensate is “pierced” by four-dimensional domains, or “bags”, of non-superconducting vacuum. Bags are bounded by membranes whose physical thickness is of the order of the inverse mass acquired by the gauge field.


2007 ◽  
Vol 22 (29) ◽  
pp. 5301-5323 ◽  
Author(s):  
DIMITRI POLYAKOV

We study the hierarchy of hidden space–time symmetries of noncritical strings in RNS formalism, realized nonlinearly. Under these symmetry transformations the variation of the matter part of the RNS action is canceled by that of the ghost part. These symmetries, referred to as the α-symmetries, are induced by special space–time generators, violating the equivalence of ghost pictures. We classify the α-symmetry generators in terms of superconformal ghost cohomologies Hn ~ H-n-2(n≥0) and associate these generators with a chain of hidden space–time dimensions, with each ghost cohomology Hn ~ H-n-2 "contributing" an extra dimension. Namely, we show that each ghost cohomology Hn ~ H-n-2 of noncritical superstring theory in d-dimensions contains d+n+1 α-symmetry generators and the generators from Hk ~ H-k-2, 1≤k ≤n, combined together, extend the space–time isometry group from the naive SO (d, 2) to SO (d+n, 2). In the simplest case of n = 1 the α-generators are identified with the extra symmetries of the 2T-physics formalism, also known to originate from a hidden space–time dimension.


1983 ◽  
Vol 32 (11) ◽  
pp. 1426
Author(s):  
SHI KANG-JIE
Keyword(s):  

2020 ◽  
Vol 43 ◽  
pp. 461-473
Author(s):  
IB Kuffner ◽  
A Stathakopoulos ◽  
LT Toth ◽  
LA Bartlett

Recovery of the elkhorn coral Acropora palmata is critical to reversing coral reef ecosystem collapse in the western Atlantic, but the species is severely threatened. To gauge potential for the species’ restoration in Florida, USA, we conducted an assisted migration experiment where 50 coral fragments of 5 nursery-raised genetic strains (genets) from the upper Florida Keys were moved to 5 sites across 350 km of the offshore reef. Additionally, 4 fragments from the 1 remaining colony of A. palmata in Dry Tortugas National Park (DRTO) were added to the 2 DRTO experimental sites to test for local adaptation. To measure coral performance, we tracked coral survival, calcification, growth, and condition from May 2018 to October 2019. All 24 corals relocated to the DRTO sites survived and calcified ~85% faster than the fewer surviving corals transplanted to the 2 upper Keys sites. While coral survival across the entire experiment did not depend on genet, there was a weak but statistically significant genetic effect on calcification rate among the corals relocated to DRTO. The DRTO native genet was among the fastest growing genets, but it was not the fastest, suggesting a lack of local adaptation at this scale. Our results indicate that DRTO, a remote reef system inhabited by the species during the Holocene and located at the nexus of major ocean currents, may be a prime location for reestablishing A. palmata. Assisted migration of A. palmata to DRTO could restore a sexually reproducing population in <10 yr, thereby promoting the species’ regional recovery.


2018 ◽  
Vol 33 (18n19) ◽  
pp. 1850107
Author(s):  
Shiva Heidarian ◽  
Davoud Kamani

We shall construct two boundary states which are corresponding to a dynamical fractional D[Formula: see text]-brane in the presence of the fluxes of the Kalb–Ramond field and a [Formula: see text] gauge potential in the partially orbifold space–time [Formula: see text]. These states accurately describe the D[Formula: see text]-brane in the twisted and untwisted sectors under the orbifold projection. We use them to compute the interaction of two parallel fractional D[Formula: see text]-branes with the transverse velocities, tangential rotations and tangential linear motions. Various properties of the interaction, such as its long-range force, will be discussed.


Sign in / Sign up

Export Citation Format

Share Document