A 3D graphene interface (Si-doped) of Ag matrix with excellent electronic transmission and thermal conductivity via nano-assembly modification

2018 ◽  
Vol 51 (16) ◽  
pp. 165306 ◽  
Author(s):  
Xianzhu Ye ◽  
Ming Li ◽  
Yafei Zhang
Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6867
Author(s):  
Zheng Liu ◽  
Qinsheng Wang ◽  
Linlin Hou ◽  
Yingjun Liu ◽  
Zheng Li

Graphene aerogels have attracted much attention as a promising material for various applications. The unusually high intrinsic thermal conductivity of individual graphene sheets makes an obvious contrast with the thermal insulating performance of assembled 3D graphene materials. We report the preparation of anisotropy 3D graphene aerogel films (GAFs) made from tightly packed graphene films using a thermal expansion method. GAFs with different thicknesses and an ultimate low density of 4.19 mg cm−3 were obtained. GAFs show high anisotropy on average cross-plane thermal conductivity (K⊥) and average in-plane thermal conductivity (K||). Additionally, uniaxially compressed GAFs performed a large elongation of 11.76% due to the Z-shape folding of graphene layers. Our results reveal the ultralight, ultraflexible, highly thermally conductive, anisotropy GAFs, as well as the fundamental evolution of macroscopic assembled graphene materials at elevated temperature.


1998 ◽  
Vol 538 ◽  
Author(s):  
Min Xinmin ◽  
Nan Cewen ◽  
Cai Kefeng

AbstractStructural characteristics, chemical bonds and thermoelectric properties of Si-doped boron carbides are studied through calculations of various structural unit models by using a self-consistent-field discrete variation Xα method. The calculations show that Si atom doped in boron carbide is in preference to substituting B or C atoms on the end of boron carbide chain, and then may occupy interstitial sites, but it is difficult for Si to substitute B or C atom in the centers of chain or in the icosahedra. A representative structural unit containing a Si atom is [C-B-Si]ε+ [B11C]ε-, while the structural unit without Si is [C-B-B(C)]δ--[B11C]δ+, and the coexistence of these two different structural units makes the electrical conductivity increases. As the covalent bond of Si-B or Si-C is weaker than that of B-B or B-C, the thermal conductivity decreases when Si is added into boron carbides. With the electrical conductivity increases and the thermal conductivity decreases, Si doping has significant effect on thermoelectric properties of boron carbides.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Federico Conrado ◽  
Matteo Pavese

In order to overcome thermal resistance issues in polymeric matrix composites, self-standing graphene aerogels were synthetized and infiltrated with an epoxy resin, in order to create conductive preferential pathways through which heat can be easily transported. These continuous highly thermally conductive 3D-structures show, due to the high interconnection degree of graphene flakes, enhanced transport properties. Two kinds of aerogels were investigated, obtained by hydrothermal synthesis (HS) and ice-templated direct freeze synthesis (DFS). Following HS method an isotropic structure is obtained, and following DFS method instead an anisotropic arrangement of graphene flakes results. The density of the structure can be tuned leading to a different amount of graphene inside the final composite. The residual oxygen, known to be detrimental to thermal properties, was removed by thermal treatment before the infiltration process. With 1,25 wt.% of graphene, using HS method, the thermal conductivity of the polymeric resin was increased by 80%, suggesting that this technique is a valid route to improve the thermal performance of graphene-based composites. When preferential orientation of the filler was present (DFS case), thermal conductivity was increased more than 25% with a graphene content of only 0,27 wt.%, demonstrating that oriented structures can further improve the thermal transport efficiency.


Nano Research ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2741-2748
Author(s):  
Muhammad Maqbool ◽  
Haichang Guo ◽  
Akbar Bashir ◽  
Ali Usman ◽  
Adeel Y. Abid ◽  
...  

Author(s):  
Man Li ◽  
Yanan Yue

The negative influence of substrate on in-plane phonon transport in graphene has been revealed by intensive research, whereas the interaction between phonons couplings across graphene/substrate interface and within graphene is still needed to figure out. In this work, we put forward a two-step Raman method to accomplish interface thermal resistance characterization of graphene/SiO2 and in-plane thermal conductivity measurement of supported graphene by SiO2. In order to calculate the interfacial thermal resistance, the temperature difference between graphene and its substrate was probed using Raman thermometry after the graphene film was uniformly electrically heated. Combing the ITR and the temperature response of graphene to laser heating, the thermal conductivity was computed using the fin heat transfer model. Our results shows that the thermal resistance of free graphene/SiO2 is enormous and the thermal conductivity of the supported graphene is significantly suppressed. The phonons scattering and leakage at the interface are mainly responsible for the reduction of thermal conductivity of graphene on substrate. The morphology change of graphene caused by heating mainly determines the huge interfacial thermal resistance and partly contributes to the suppression of thermal conductivity of graphene. This thermal characterization approach simultaneously realizes the non-contact and non-destructive measurement of interfacial thermal resistance and thermal conductivity of graphene interface materials.


1998 ◽  
Vol 245 (1-2) ◽  
pp. 127-132 ◽  
Author(s):  
B. Salce ◽  
L. Devoille ◽  
R. Calemczuk ◽  
A.I. Buzdin ◽  
G. Dhalenne ◽  
...  

2019 ◽  
Vol 7 (9) ◽  
pp. 2725-2733 ◽  
Author(s):  
Chaobo Liang ◽  
Hua Qiu ◽  
Yangyang Han ◽  
Hongbo Gu ◽  
Ping Song ◽  
...  

A 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposite exhibits superior electromagnetic interference shielding and excellent thermal conductivity.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 455
Author(s):  
Liwei Zhang ◽  
Peng He ◽  
Kunkun Song ◽  
Jingxiang Zhang ◽  
Baoqiang Zhang ◽  
...  

We describe lightweight three-dimensional (3D) graphene hybrid SiO2 aerogels (GSAs) with hierarchically robust interconnected networks fabricated via an in situ deposition procedure after a hydrothermal assembling strategy with graphene oxide sheets. The nano-/micron-thick SiO2 coating conformably grew over porous graphene templates with two constituents (e.g., graphene and SiO2) and formed chemically bonded interfaces. In addition, it significantly refined the primary graphene pores by hundreds of microns into smaller porous patterns. Studies of its mechanical properties verified that the graphene interframework made the ceramic composites elastic, while SiO2 deposition enhanced the strength required it to resist deformation. The higher SiO2 contents resulted in lower elasticity but larger strength because of the apparent nanosize effect of SiO2 ceramic thickness; GSAs with a density of 82.3–250.3 mg/cm3 (corresponding to SiO2 sol with concentration ranging from 5 to 20 wt %) could reach a good balance of strength and elasticity. Benefiting from hierarchical micronetworks consisting of semiclosed or closed pores, GSAs offer excellent thermal-insulation performance, with thermal conductivity as low as 0.026 W/(m·K). GSAs offer improved fire-resistant capacity rather than that of pure carbon-based aerogels via the synergic protection of SiO2 ceramic accretion. This highlights the promising applications of GSAs as lightweight thermal-shielding candidates for industrial equipment, civil architectures, and defense transportation vehicles.


Sign in / Sign up

Export Citation Format

Share Document