Examination of applicability of the ISO slab phantom as calibration phantom for the new ICRU 95 operational quantity personal dose

Author(s):  
Victor Merza ◽  
Christian HRANITZKY ◽  
Andreas STEURER ◽  
Franz Josef MARINGER

Abstract In this article, the proposal of ICRU/ICRP, that the ISO slab phantom should continue to be used as calibration phantom for the new ICRU Report 95 operational quantity personal dose should be legitimized by simulation and performance of experiments to determine backscatter factors on the ISO slab phantom and, in comparison, on an anthropomorphic Alderson Rando phantom. The scope of this work was restricted to the photon energy range of radiation qualities commonly used in X-ray diagnostics. For this purpose, a shadow-free diagnostic (SFD) ionization chamber was used to measure backscatter factors for X radiation in the energy range of 24 keV to 118 keV. The Monte Carlo code MCNP 6.2 was used to validate measurement results on the ISO slab phantom. Additionally, the influence of varying the SFD position on the Rando phantom on the backscatter factor was determined. Since backscatter factors on the ISO slab phantom differ only up to 5 % from those on the Rando phantom, it could be concluded that it is not necessary to develop a new phantom for calibrations in terms of personal dose. A position variation of the detector by few centimeters on the surface of the Rando phantom causes similarly large deviations and thus alone represents an equally large uncertainty contribution in practical personal dosimetry than that arising from the dissimilarity of the real human body to the ISO slab phantom.

2020 ◽  
Vol 27 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Aleksandr Kalinko ◽  
Wolfgang A. Caliebe ◽  
Roland Schoch ◽  
Matthias Bauer

The design and performance of the high-resolution wavelength-dispersive multi-crystal von Hamos-type spectrometer at PETRA III beamline P64 are described. Extended analyzer crystal collection available at the beamline allows coverage of a broad energy range from 5 keV to 20 keV with an energy resolution of 0.35–1 eV. Particular attention was paid to enabling two-color measurements by a combination of two types of analyzer crystals and two two-dimensional detectors. The performance of the spectrometer is demonstrated by elastic-line and emission-line measurements on various compounds.


2012 ◽  
Vol 519 ◽  
pp. 45-48 ◽  
Author(s):  
Yi Zhi Yan ◽  
Xiang Liu ◽  
Qing Ming Chen ◽  
Shao Chun Zhang

La2/3Sr1/3MnO3: Agx (LSMO: Agx) polycrystalline composites were prepared by co-precipitation method. Structure and performance of La2/3Sr1/3MnO3: Agx were investigated by X ray diffraction and R-T measurement. Results show that, all samples are perovskite structure. With the addition of Ag increased, the volume and conductivity of LSMnO: Agx were increased accordingly. The resistivity of the samples (x=0.30, 0.40) is only 10% of the pristine. The TCR of LSMO: Agx (x=0.3) is obtained maximum value of 3.39% as the Z value 0.50. It’s perhaps the proper candidate material to be high temperature electrode or near room temperature bolometer and infrared devices.


1987 ◽  
Vol 48 (C9) ◽  
pp. C8-669-C8-672 ◽  
Author(s):  
S. SINGH ◽  
S. KUMAR ◽  
D. MEHTA ◽  
M. L. GARG ◽  
N. SINGH ◽  
...  
Keyword(s):  

Author(s):  
Josef Hormes ◽  
Wantana Klysubun ◽  
Jost Göttert ◽  
Henning Lichtenberg ◽  
Alexey Maximenko ◽  
...  
Keyword(s):  

2016 ◽  
Author(s):  
Maurice A. Leutenegger ◽  
Marc Audard ◽  
Kevin R. Boyce ◽  
Gregory V. Brown ◽  
Meng P. Chiao ◽  
...  
Keyword(s):  
X Ray ◽  

2002 ◽  
Vol 17 (12n13) ◽  
pp. 1799-1808 ◽  
Author(s):  
MARCO TAVANI

Gamma-ray astrophysics in the energy range between 30 MeV and 30 GeV is in desperate need of arcminute angular resolution and source monitoring capability. The AGILE Mission planned to be operational in 2004-2006 will be the only space mission entirely dedicated to gamma-ray astrophysics above 30 MeV. The main characteristics of AGILE are the simultaneous X-ray and gamma-ray imaging capability (reaching arcminute resolution) and excellent gamma-ray timing (10-100 microseconds). AGILE scientific program will emphasize a quick response to gamma-ray transients and multiwavelength studies of gamma-ray sources.


1976 ◽  
Vol 47 (12) ◽  
pp. 1475-1478 ◽  
Author(s):  
L. S. Birks ◽  
J. W. Sandelin ◽  
C. M. Dozier
Keyword(s):  

Author(s):  
P. Laurent ◽  
F. Acero ◽  
V. Beckmann ◽  
S. Brandt ◽  
F. Cangemi ◽  
...  

AbstractBased upon dual focusing techniques, the Polarimetric High-Energy Modular Telescope Observatory (PHEMTO) is designed to have performance several orders of magnitude better than the present hard X-ray instruments, in the 1–600 keV energy range. This, together with its angular resolution of around one arcsecond, and its sensitive polarimetry measurement capability, will give PHEMTO the improvements in scientific performance needed for a mission in the 2050 era in order to study AGN, galactic black holes, neutrons stars, and supernovae. In addition, its high performance will enable the study of the non-thermal processes in galaxy clusters with an unprecedented accuracy.


2021 ◽  
Author(s):  
Emily J. King ◽  
Natalie N. Viscariello ◽  
Larry A. DeWerd

This work seeks to develop standard X-ray beams that are matched to radiobiology X-ray irradiators. The calibration of detectors used for dose determination of these irradiators is performed with a set of standard X rays that are more heavily filtered and/or lower energy, which leads to a higher uncertainty in the dose measurement. Models of the XRad320, SARRP, and the X-ray tube at the University of Wisconsin Medical Radiation Research Center (UWMRRC) were created using the BEAMnrc user code of the EGSnrc Monte Carlo code system. These models were validated against measurements, and the resultant modeled spectra were used to determine the amount of added filtration needed to match the X-ray beams at the UWMRRC to those of the XRad320 and SARRP. The depth profiles and half-value layer (HVL) simulations performed using BEAMnrc agreed to measurements within 3% and 3.6%, respectively. A primary measurement device, a free-air chamber, was developed to measure air kerma in the medium energy range of X rays. The resultant spectra of the matched beams had HVL's that matched the HVL's of the radiobiology irradiators well within the 3% criteria recommended by the International Atomic Energy Agency (IAEA) and the average energies agreed within 2.4%. In conclusion, three standard X-ray beams were developed at the UWMRRC with spectra that more closely match the spectra of the XRad320 and SARRP radiobiology irradiators, which will aid in a more accurate dose determination during calibration of these irradiators.


2021 ◽  
Vol 16 (11) ◽  
pp. C11014
Author(s):  
K. Malinowski ◽  
M. Chernyshova ◽  
S. Jabłoński ◽  
I. Casiragi

Abstract The paper presents an optimization of a readout structure of the GEM-based detector designed for X-ray imaging for DTT tokamak in the energy range of 2–15 keV. The readout electrode of approximately 100 cm2 surface is composed of hexagonal pixels connected in a way that allows reducing the actual number of signal pixels (electronics channels). At the same time, based on time coincidence analysis, it makes possible to unambiguously identify the position of the recorded X-ray photon. For the input spectrum, the Detective Quantum Efficiency (DQE) of the detector was calculated using the Geant4 program and the spatial distributions of electron avalanches at the readout electrode were simulated using the Garfield++ program. These were conducted for a given energy range of radiation and a statistical distribution consistent with the shape of the spectrum considering the DQE of the detector. As a result, the size of a single hexagonal pixel was proposed to capture the position of the recorded radiation quanta in an optimal and effective way.


Sign in / Sign up

Export Citation Format

Share Document