Force Measurements Near a Natural Frequency of a Measurement System using Inverse Filters

Author(s):  
Seth Brooks ◽  
James Brooks ◽  
Melissa Green

Abstract Accurate time-resolved force measurements for complex experimental systems are important for minimizing erroneous and misleading data. These measurements become difficult when a natural frequency of the system is in or near the expected frequency domain of the time-varying force being applied. In the cases where it is not possible to avoid this occurrence, the experimenter typically abandons the setup. This work presents an inverse filter method to compensate for the dynamic response of the measurement system. A two degree-of-freedom measurement system is used to obtain force measurements with dominant forcing frequencies above and below the first natural frequency of the system. The results show that inverse filtering can be used along with digital low pass filters to correct amplification and phase shift due to the dynamic response of the measurement system to within ±4.0% of total forcing amplitude and ±5.0°. A simple cam follower mechanism is proposed as a method of low-frequency dynamic testing.

2012 ◽  
Vol 499 ◽  
pp. 238-242
Author(s):  
Li Zhang ◽  
Hong Wu ◽  
Yan Jue Gong ◽  
Shuo Zhang

Based on the 3D model of refrigeration's compressor by Pro/E software, the analyses of theoretical and experimental mode are carried out in this paper. The results show that the finite element models of compressor have high precision dynamic response characteristics and the natural frequency of the compressor, based on experimental modal analysis, can be accurately obtained, which will contribute to further dynamic designs of mechanical structures.


2021 ◽  
pp. 1-29
Author(s):  
Maya Pishvar ◽  
Ryan L Harne

Abstract Low frequency sound attenuation is often pursued using Helmholtz resonators (HRs). The introduction of a compliant wall around the acoustic cavity results in a two-degree-of-freedom (2DOF) system capable of more broadband sound absorption. In this study, we report the amplitude-dependent dynamic response of a compliant walled HR and investigate the effectiveness of wall compliance to improve the absorption of sound in linear and nonlinear regimes. The acoustic-structure interactions between the conventional Helmholtz resonator and the compliant wall result in non-intuitive responses when acted on by nonlinear amplitudes of excitation pressure. This paper formulates and studies a reduced order model to characterize the nonlinear dynamic response of the 2DOF HR with a compliant wall compared to that of a conventional rigid HR. Validated by experimental evidence, the modeling framework facilitates an investigation of strategies to achieve broadband sound attenuation, including by selection of wall material, wall thickness, geometry of the HR, and other parameters readily tuned by system design. The results open up new avenues for the development of efficient acoustic resonators exploiting the deflection of a compliant wall for suppression of extreme noise amplitudes.


Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 96
Author(s):  
Takao Oku ◽  
Hiroyuki Hirahara ◽  
Tomohiro Akimoto ◽  
Daiki Tsuchida

When a bubble detaches from a nozzle immersed in water, a sound is emitted owing to the detachment. The bubble deformation and sound emission generated after detachment has been investigated in many studies, in which the breathing mode with a natural frequency was discussed based on the dynamics of the interface between the air and water. In this study, the deformation of a bubble was observed, and the sound emitted upon detachment was measured experimentally. To analyze the bubble deformation process, a computational fluid dynamics (CFD) simulation was conducted using the volume of fluid (VOF) method to predict the sound emission. In the analysis, the deformation behavior, the oscillation frequencies, sound pressure, and radius variation were discussed by comparing the numerical and experimental data. Furthermore, the natural frequency and low frequency vibrations were discussed based on the interference between the detached bubbles and the air column vibrations.


2021 ◽  
Vol 118 (51) ◽  
pp. e2114549118
Author(s):  
Ricardo Martins Merino ◽  
Carolina Leon-Pinzon ◽  
Walter Stühmer ◽  
Martin Möck ◽  
Jochen F. Staiger ◽  
...  

Fast oscillations in cortical circuits critically depend on GABAergic interneurons. Which interneuron types and populations can drive different cortical rhythms, however, remains unresolved and may depend on brain state. Here, we measured the sensitivity of different GABAergic interneurons in prefrontal cortex under conditions mimicking distinct brain states. While fast-spiking neurons always exhibited a wide bandwidth of around 400 Hz, the response properties of spike-frequency adapting interneurons switched with the background input’s statistics. Slowly fluctuating background activity, as typical for sleep or quiet wakefulness, dramatically boosted the neurons’ sensitivity to gamma and ripple frequencies. We developed a time-resolved dynamic gain analysis and revealed rapid sensitivity modulations that enable neurons to periodically boost gamma oscillations and ripples during specific phases of ongoing low-frequency oscillations. This mechanism predicts these prefrontal interneurons to be exquisitely sensitive to high-frequency ripples, especially during brain states characterized by slow rhythms, and to contribute substantially to theta-gamma cross-frequency coupling.


2020 ◽  
Vol 11 (2) ◽  
pp. 155-162
Author(s):  
A. F. Sabitov ◽  
I. A. Safina

The spectral method for establishing dynamic response of measuring instruments basically requires determining the amplitude spectrum of the signal in its informative part that includes the amplitude spectrum at zero frequency. The operating frequency range of existing low-frequency spectrum analyzers is above zero frequency that leads to an uncertainty in dynamic response of measuring instruments determined by the spectral method. The purpose of this paper is to develop a program for calculating the signal amplitude spectrum, starting from zero frequency, to implement a spectral method for determining the dynamic response of measuring instruments on computers equipped with the MatLab package.To implement the spectral method for determining the dynamic response of measuring instruments, we developed a program in the MatLab 2013b environment that determines the signal amplitude spectrum from zero Hertz. The program reads the source data from Excel tables and presents the calculated amplitude spectrum as a chart and a report table.It is shown that the developed program calculates the signal amplitude spectrum with a standard deviation of not more than 3.4 % in the frequency range of 0 to 10 rad/s. The calculated amplitude spectrum allows determining the time constant of first-order aperiodic measuring instruments with an uncertainty of not more than 0.166 % at any noise level, if their frequencies are outside the information part of the spectrum.We demonstrated the claimed advantage of the spectral method for determining dynamic response using the developed program by the example of a high-frequency noise in the transient response of some measuring instruments.


Author(s):  
Milan Moravčík ◽  
Martin Moravčík

Abstract The paper is devoted dynamic effects in the track structure - the quasi-static excitation due to moving load, as the important source for the response of track components in the low frequency area (0 Hz < f < 40 Hz). The low-frequency track (the rail) response is associated with periodicity of wheel sets, bogies, and carriages of passage trains, The periodicity of track loading is determined by so called dominant frequencies f(d) at a position x of the track.


Author(s):  
Andi I. Mahyuddin ◽  
Ashok Midha

Abstract The camshaft of a cam-follower mechanism experiences a position-dependent moment due to the force exerted on the cam by the follower, causing the angular speed of the camshaft to fluctuate. In this work, a method to expediently predict the camshaft speed fluctuation is developed. The governing equation of motion is derived assuming that the cam-follower system is an ideal one wherein all members are treated as rigid. An existing closed-form numerical algorithm is used to obtain the steady-state rigid-body dynamic response of a machine system. The solution considers a velocity-dependent moment; specifically, a resisting moment is modeled as a velocity-squared damping. The effects of flywheel size and resisting moment on camshaft speed fluctuation are studied. The results compare favorably with those obtained from transient response using a direct integration scheme. The analytical result also shows excellent agreement with the camshaft speed variation of an experimental cam-follower mechanism. The steady-state rigid-body dynamic response obtained herein also serves as a first approximation to the input camshaft speed variation in the dynamic analysis of flexible cam-follower mechanisms in a subsequent research.


Author(s):  
Haider N. Arafat ◽  
Ali H. Nayfeh

Abstract We investigate the nonlinear bending-torsion response of a cantilever beam to a transverse harmonic excitation, where the forcing frequency is near the natural frequency of the first torsional mode. We analyze the case where the first in-plane bending mode is activated by a nonresonant mechanism. We use the method of time-averaged Lagrangian and virtual work to determine the equations governing the modulations of the phases and amplitudes of the interacting modes. These equations are then used to investigate the nonlinear behavior of limit-cycle oscillations of the beam as the excitation amplitude is slowly varied. As an example, we consider the response of an aluminum beam for which the natural frequency of the first in-plane bending mode is fv1 ≈ 5.7 Hz and the natural frequency of the first torsional mode is fϕ1 ≈ 138.9 Hz.


Sign in / Sign up

Export Citation Format

Share Document