The influence of single layer MoS2 flake on the propagated surface plasmons of silver nanowire

2021 ◽  
Author(s):  
Liu Lu ◽  
Tiantian Zhao ◽  
Lei Chen ◽  
Chenyang Wang ◽  
Zhiqiang Zhou ◽  
...  

Abstract We demonstrate the enhancement of both excitation and transmission efficiency of the propagated surface plasmon (SP) of Ag nanowire (Ag NW) in hybrid Ag-MoS2 structure by contrasting the SP propagation of the same Ag NW on different substrates including silicon substrate, monolayer MoS2, or partially overlapping the Ag NW on MoS2 flake. The simulation results indicate that with the assistance of MoS2, the leaky radiation of the hybrid plasmonic modes of the H1 and H2 can be prominently suppressed by the high refractive index dielectric layer of the MoS2, which provides an optical barrier blocking the leaky radiation, resulting in the reduced propagation loss. Our work provides a feasible and effective method to enhance the SP propagation length.

2016 ◽  
Vol 4 (27) ◽  
pp. 10435-10443 ◽  
Author(s):  
Banseok You ◽  
Chul Jong Han ◽  
Youngmin Kim ◽  
Byeong-Kwon Ju ◽  
Jong-Woong Kim

A new approach to the fabrication of a transparent, stretchable and pressure-sensitive capacitor was developed by employing a single layer of Ag nanowire-based electrodes and a transparent, stretchable polymer.


RSC Advances ◽  
2015 ◽  
Vol 5 (100) ◽  
pp. 81915-81919 ◽  
Author(s):  
Jin Young Park ◽  
G. Seeta Rama Raju ◽  
Byung Kee Moon ◽  
Jung Hyun Jeong

LightTools simulation results revealed that the light extraction efficiency of an LED has been improved to 70.12% when ZrO2 spheres were coated on the GaN surface.


2019 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Mojtaba Haghighatlari ◽  
Sai Prasad Ganesh ◽  
Chong Cheng ◽  
Johannes Hachmann

<div>We present a high-throughput computational study to identify novel polyimides (PIs) with exceptional refractive index (RI) values for use as optic or optoelectronic materials. Our study utilizes an RI prediction protocol based on a combination of first-principles and data modeling developed in previous work, which we employ on a large-scale PI candidate library generated with the ChemLG code. We deploy the virtual screening software ChemHTPS to automate the assessment of this extensive pool of PI structures in order to determine the performance potential of each candidate. This rapid and efficient approach yields a number of highly promising leads compounds. Using the data mining and machine learning program package ChemML, we analyze the top candidates with respect to prevalent structural features and feature combinations that distinguish them from less promising ones. In particular, we explore the utility of various strategies that introduce highly polarizable moieties into the PI backbone to increase its RI yield. The derived insights provide a foundation for rational and targeted design that goes beyond traditional trial-and-error searches.</div>


2013 ◽  
Vol 28 (6) ◽  
pp. 671-676 ◽  
Author(s):  
Yu-Qing ZHANG ◽  
Li-Li ZHAO ◽  
Shi-Long XU ◽  
Chao ZHANG ◽  
Xiao-Ying CHEN ◽  
...  

Author(s):  
Zhiyou Li ◽  
Zao Yi ◽  
Tinting Liu ◽  
Li Liu ◽  
Xifang Chen ◽  
...  

In this paper, we designed a three-band narrowband perfect absorber based on Bulk Dirac semimetallic (BDS) metamaterials. The absorber consists of a hollow Dirac semimetallic layer above, a gold layer...


2021 ◽  
Author(s):  
Nicole Ziegenbalg ◽  
Ruth Lohwasser ◽  
Giovanni D’Andola ◽  
Torben Adermann ◽  
Johannes Christopher Brendel

Polyethersulfones are an interesting class of polymers for industrial applications due to their unusual properties such as a high refractive index, flame-retardant properties, high temperature and chemical resistance. The common...


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4421
Author(s):  
Ángela Barreda ◽  
Pablo Albella ◽  
Fernando Moreno ◽  
Francisco González

High refractive index dielectric (HRID) nanoparticles are a clear alternative to metals in nanophotonic applications due to their low losses and directional scattering properties. It has been demonstrated that HRID dimers are more efficient scattering units than single nanoparticles in redirecting the incident radiation towards the forward direction. This effect was recently reported and is known as the “near zero-backward” scattering condition, attained when nanoparticles forming dimers strongly interact with each other. Here, we analyzed the electromagnetic response of HRID isolated nanoparticles and aggregates when deposited on monolayer and graded-index multilayer dielectric substrates. In particular, we studied the fraction of radiation that is scattered towards a substrate with known optical properties when the nanoparticles are located on its surface. We demonstrated that HRID dimers can increase the radiation emitted towards the substrate compared to that of isolated nanoparticles. However, this effect was only present for low values of the substrate refractive index. With the aim of observing the same effect for silicon substrates, we show that it is necessary to use a multilayer antireflection coating. We conclude that dimers of HRID nanoparticles on a graded-index multilayer substrate can increase the radiation scattered into a silicon photovoltaic wafer. The results in this work can be applied to the design of novel solar cells.


Sign in / Sign up

Export Citation Format

Share Document