Highly anisotropic thermal conductivity and electrical insulation of nanofibrillated cellulose/Al2O3@rGO composite films: effect of the particle size

2021 ◽  
Author(s):  
Meng Ma ◽  
Qindan Chu ◽  
Hao Lin ◽  
Lin Xu ◽  
Huiwen He ◽  
...  

Abstract Abstract: Nanofibrillated cellulose (NFC) film has received tremendous attention due to its excellent electrical insulation, which shows great application prospects in the field of electronic devices. However, the low efficient heat dissipation of NFC film largely limits its use in advanced applications. In this work, the rGO hybrid fillers loaded alumina (Al2O3) particles with different sizes were synthesized by different drying methods and then they were mixed with NFC to prepare a series of NFC-based composite films. The effect of Al2O3 particle sizes on the thermal conductivity of NFC-based composite films was studied. The results showed that the surface areas of l-Al2O3 particles were smaller than that of s-Al2O3 particles, resulting in the smaller interface thermal resistance and superior thermal conductivity of the film containing l-Al2O3 particles. The NFC-based composite films showed great potential for the applications in thermal management by adjusting the particle size of fillers.

2017 ◽  
Vol 35 (2) ◽  
pp. 382-389 ◽  
Author(s):  
Lukasz Jarosinski ◽  
Andrzej Rybak ◽  
Karolina Gaska ◽  
Grzegorz Kmita ◽  
Renata Porebska ◽  
...  

Abstract Efficient heat dissipation from modern electronic devices is a key issue for their proper performance. An important role in the assembly of electronic devices is played by polymers, due to their simple application and easiness of processing. The thermal conductivity of pure polymers is relatively low and addition of thermally conductive particles into polymer matrix is the method to enhance the overall thermal conductivity of the composite. The aim of the presented work is to examine a possibility of increasing the thermal conductivity of the filled epoxy resin systems, applicable for electrical insulation, by the use of composites filled with graphene nanoplatelets. It is remarkable that the addition of only 4 wt.% of graphene could lead to 132 % increase in thermal conductivity. In this study, several new aspects of graphene composites such as sedimentation effects or temperature dependence of thermal conductivity have been presented. The thermal conductivity results were also compared with the newest model. The obtained results show potential for application of the graphene nanocomposites for electrical insulation with enhanced thermal conductivity. This paper also presents and discusses the unique temperature dependencies of thermal conductivity in a wide temperature range, significant for full understanding thermal transport mechanisms.


Author(s):  
Xuran Xu ◽  
Yichuan Su ◽  
Yongzheng Zhang ◽  
Shuaining Wu ◽  
Kai Wu ◽  
...  

The highly thermo-conductive but electrically insulating film, with desirable mechanical performances, is extremely demanded for thermal management of portable and wearable electronics. The integration of boron nitride nanosheets (BNNSs) with regenerated cellulose (RC) is a sustainable strategy to satisfy these requirements, while its practical application is still restricted by the brittle fracture and loss of toughness of the composite films especially at the high BNNS addition. Herein, a dual-crosslinked strategy accompanied with uniaxial pre-stretching treatment was introduced to engineer the artificial RC/BNNS film, in which partial chemical bonding interactions enable the effective interfiber slippage and prevent any mechanical fracture, while non-covalent hydrogen bonding interactions serve as the sacrifice bonds to dissipate the stress energy, resulting in a simultaneous high mechanical strength (103.4 MPa) and toughness (10.2 MJ/m3) at the BNNS content of 45 wt%. More importantly, attributed to the highly anisotropic configuration of BNNS, the RC/BNNS composite film also behaves as an extraordinary in-plane thermal conductivity of 15.2 W/m·K. Along with additional favorable water resistance and bending tolerance, this tactfully engineered film ensures promised applications for heat dissipation in powerful electronic devices.


2011 ◽  
Vol 105-107 ◽  
pp. 1751-1754 ◽  
Author(s):  
Hui Wang ◽  
Peng Chen ◽  
Jian Sun ◽  
Xiao Jun Kuang ◽  
Zhen Kun Yao

In contemporary electronic technology era, the volume of electronic equipment and printed circuit board reduced so dramatically that the requirements of heat dissipation and insulation increase thereafter. In this research, γ-aminopropyltriethoxysilane (KH550)-treated boron nitride (BN) powder was used as a filler to modify epoxy composites. Effects of the BN particle size and concentration on the thermal conductivity of composites were investigated. SEM image showed the treated BN filler dispersed well in the composite matrix. Moreover, the thermal conductivity was enhanced as the BN concentration was increased. Similar phenomenon was also observed when the filler particle size was reduced. Results indicated that with increasing amount of BN addition, the composites’ thermal conductivity showed a nearly linear increase. When the mass fraction of BN was 30% and its particle size was 220 nm, the thermal conductivity reached 3.4 W/(m•k), which was 17 times as high as that of pure EP resin.


2017 ◽  
Vol 5 (15) ◽  
pp. 3748-3756 ◽  
Author(s):  
Weixing Yang ◽  
Zedong Zhao ◽  
Kai Wu ◽  
Rui Huang ◽  
Tianyu Liu ◽  
...  

In this study, ultrathin flexible RGO/CNF films with outstanding EMI shielding performances and strongly anisotropic thermal conductivity were successfully fabricated.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1990
Author(s):  
Zheng Jin ◽  
Fei Liang ◽  
Wenzhong Lu ◽  
Jinhang Dai ◽  
Shunliang Meng ◽  
...  

Magnetically oriented three-phase composite systems of epoxy resin, aluminum nitride, and nickel have been prepared, the thermal conductivity of composites filled with nickel powder with different particle sizes and content under different applied magnetic fields was studied. The vibrating scanning magnetometer (VSM) and scanning electron microscopy (SEM) were applied to investigate the dispersion of nickel powder in the composites. The results showed that the anisotropic thermal conductivity of the composites treated by applied magnetic field forming chain structure is obtained. The epoxy resin-based composites filled with 30 vol% aluminum nitride with particle size of 1 μm and 2 vol% nickel powder with particle size of 1 μm and aligned with vertical magnetic field have the highest thermal conductivity (1.474 W/mk), which increases the thermal conductivity of the composites by 737% and 58% compared to the pure epoxy resin (0.2 W/mk) and the composites filled with 30 vol% aluminum nitride (0.933 W/mk). In addition, we simulated the influence of nickel powder particles with different particle sizes and arrangements on the thermal conductivity of the composite material in COMSOL Multiphysics software, and the results were consistent with the experimental results.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2191
Author(s):  
Andrzej Rybak ◽  
Lukasz Malinowski ◽  
Agnieszka Adamus-Wlodarczyk ◽  
Piotr Ulanski

The evaluation of a possible application of functional shrinkable materials in thermally conductive electrical insulation elements was investigated. The effectiveness of an electron beam and gamma radiation on the crosslinking of a selected high density polyethylene grade was analyzed, both qualitatively and quantitatively. The crosslinked polymer composites filled with ceramic particles were successfully fabricated and tested. On the basis of the performed investigation, it was concluded that the selected filler, namely a boron nitride powder, is suitable for the preparation of the crosslinked polymer composites with enhanced thermal conductivity. The shape memory effect was fully observed in the crosslinked samples with a recovery factor reaching nearly 99%. There was no significant influence of the crosslinking, stretching, and recovery of the polymer composite during shape memory phenomenon on the value of thermal conductivity. The proposed boron nitride filled polyethylene composite subjected to crosslinking is a promising candidate for fabrication of thermally shrinkable material with enhanced heat dissipation functionality for application as electrically insulating components.


Sign in / Sign up

Export Citation Format

Share Document