Insight into the stacking and the species-ordering dependences of interlayer bonding in SiC/GeC polar heterostructures

2021 ◽  
Author(s):  
Kazi Jannatul Tasnim ◽  
Safia Abdullah R Alharbi ◽  
Rajib Musa ◽  
Simon Hosch Lovell ◽  
Zachary Alexander Akridge ◽  
...  

Abstract Two-dimensional (2D) polar materials experience an in-plane charge transfer between different elements due to their electron negativities. When they form vertical heterostructures, the electrostatic force triggered by such charge transfer plays an important role in the interlayer bonding beyond van der Waals (vdW) interaction. Our comprehensive first principle study on the structural stability of the 2D SiC/GeC hybrid bilayer heterostructure has found that the electrostatic interlayer interaction can induce the π-π orbital hybridization between adjacent layers under different stacking and out-of-plane species ordering, with strong hybridization in the cases of Si-C and C-Ge species orderings but weak hybridization in the case of the C-C ordering. In particular, the attractive electrostatic interlayer interaction in the cases of Si-C and C-Ge species orderings mainly controls the equilibrium interlayer distance and the vdW interaction makes the system attain a lower binding energy. On the contrary, the vdW interaction mostly controls the equilibrium interlayer distance in the case of the C-C species ordering and the repulsive electrostatic interlayer force has less effect. Interesting finding is that the band structure of the SiC/GeC hybrid bilayer is sensitive to the layer-layer stacking and the out-of-plane species ordering. An indirect band gap of 2.76 eV (or 2.48 eV) was found under the AA stacking with Si-C ordering (or under the AB stacking with C-C ordering). While a direct band gap of 2.00 eV – 2.88 eV was found under other stacking and species orderings, demonstrating its band gap tunable feature. Furthermore, there is a charge redistribution in the interfacial region leading to a built-in electric field. Such field will separate the photo-generated charge carriers in different layers and is expected to reduce the probability of carrier recombination, and eventually give rise to the electron tunneling between layers.

2018 ◽  
Author(s):  
Sherif Tawfik ◽  
Olexandr Isayev ◽  
Catherine Stampfl ◽  
Joseph Shapter ◽  
David Winkler ◽  
...  

Materials constructed from different van der Waals two-dimensional (2D) heterostructures offer a wide range of benefits, but these systems have been little studied because of their experimental and computational complextiy, and because of the very large number of possible combinations of 2D building blocks. The simulation of the interface between two different 2D materials is computationally challenging due to the lattice mismatch problem, which sometimes necessitates the creation of very large simulation cells for performing density-functional theory (DFT) calculations. Here we use a combination of DFT, linear regression and machine learning techniques in order to rapidly determine the interlayer distance between two different 2D heterostructures that are stacked in a bilayer heterostructure, as well as the band gap of the bilayer. Our work provides an excellent proof of concept by quickly and accurately predicting a structural property (the interlayer distance) and an electronic property (the band gap) for a large number of hybrid 2D materials. This work paves the way for rapid computational screening of the vast parameter space of van der Waals heterostructures to identify new hybrid materials with useful and interesting properties.


2005 ◽  
Vol 11 (11) ◽  
pp. 3325-3341 ◽  
Author(s):  
Nicolle N. P. Moonen ◽  
William C. Pomerantz ◽  
Robin Gist ◽  
Corinne Boudon ◽  
Jean-Paul Gisselbrecht ◽  
...  

Author(s):  
Fangrong Hu ◽  
Jun Yao ◽  
Chuankai Qiu ◽  
Dajia Wang

In this paper, a MEMS mirror actuated by an electrostatic repulsive force has been proposed and analyzed. The mirror consists of four U-shape springs, a fixed bottom electrode and a movable top electrode, there are many comb fingers on the edges of both electrodes. When the voltage is applied to the top and bottom electrodes, an asymmetric electric field is generated to the top movable fingers and springs, thus a net electrostatic force is produced to move the top plate out of plane. This designed micro-mirror is different from conventional MDM based on electrostatic-attractive-force, which is restricted by one-third thickness of the sacrificial layer for the pull-in phenomenon. The characteristic of this MDM has been analyzed, the result shows that the resonant frequency of the first mode is 8 kHz, and the stroke reaches 10μm at 200V, a MDM with large strokes can be realized for the application of adaptive optics in optical aberrations correction.


2019 ◽  
Vol 196 ◽  
pp. 24-32 ◽  
Author(s):  
Weidong Zhao ◽  
Wei Cui ◽  
Shujun Xu ◽  
Yuanyuan Wang ◽  
Ke Zhang ◽  
...  

2000 ◽  
Author(s):  
Hung-Yi Lin ◽  
Weileun Fang

Abstract In the present study, an out-of-plane motion actuator driven by the electrostatic force is designed and fabricated. The electrostatic force generated by the gap closing electrodes and the comb electrodes will be studied. Moreover, a lever motion transmitting mechanism is proposed to modulate the motion of the actuators. Although the space between the driving electrodes is limited, the lever motion transmitting mechanism could enlarge the traveling distance. The applications of the out-of-plane motion actuator are remarkably increased due to the assistant of the transmitting mechanism.


2004 ◽  
Vol 84 (22) ◽  
pp. 4415-4417 ◽  
Author(s):  
Guangyong Zhou ◽  
Michael James Ventura ◽  
Martin Straub ◽  
Min Gu ◽  
Atsushi Ono ◽  
...  

2016 ◽  
Vol 2 (4) ◽  
pp. e1501518 ◽  
Author(s):  
Jian Sun ◽  
Manoharan Muruganathan ◽  
Hiroshi Mizuta

Detection of individual molecular adsorption, which represents the ultimate resolution of gas sensing, has rarely been realized with solid-state devices. So far, only a few studies have reported detection of individual adsorption by measuring the variation of electronic transport stemming from the charge transfer of adsorbate. We report room-temperature detection of the individual physisorption of carbon dioxide molecules with suspended bilayer graphene (BLG) based on a different mechanism. An electric field introduced by applying back-gate voltage is used to effectively enhance the adsorption rate. A unique device architecture is designed to induce tensile strain in the BLG to prevent its mechanical deflection onto the substrate by electrostatic force. Despite the negligible charge transfer from a single physisorbed molecule, it strongly affects the electronic transport in suspended BLG by inducing charged impurity, which can shut down part of the conduction of the BLG with Coulomb impurity scattering. Accordingly, we can detect each individual physisorption as a step-like resistance change with a quantized value in the BLG. We use density functional theory simulation to theoretically estimate the possible resistance response caused by Coulomb scattering of one adsorbed CO2 molecule, which is in agreement with our measurement.


Sign in / Sign up

Export Citation Format

Share Document