Controlled release of metal phenolic network protected phage for treating bacterial infection

2022 ◽  
Author(s):  
Weilun Sun ◽  
Jingjing Xu ◽  
Bo Liu ◽  
Yuan-Di Zhao ◽  
Ling Yu ◽  
...  

Abstract Phage is a promising therapeutic agent for treating antibiotic resistant bacteria. However, in the process of treatment, phage may be cleared by the immune system and cleaved by protease, which could affect the efficacy of phage. In order to solve the above problems, phage encapsulation is usually adopted. In this study, we employed metal phenolic network (MPN) for efficient phage encapsulation which could protect phage from the cleavage of protease, and keep cytotoxicity weak. In the model of skin wound infection, the encapsulated phage could be released in response to pH change to achieve good antibacterial effect. Furthermore, the MPN encapsulation could prolong the T4 phage residence time at the wound. Our findings suggest that MPN can be a promising material for phage encapsulation.

2021 ◽  
Vol 16 (3) ◽  
pp. 91-95
Author(s):  
Surachai Rattanasuk ◽  
Rujirek Boongapim ◽  
Tannatorn Phiwthong

The aim of this study was to determine the antibacterial activity of Cathormion umbellatum extracts against seven antibiotic-resistant bacteria. The pods, leaves and branches of C. umbellatum were extracted with ethanol and methanol. The disc diffusion assay was used to screen the antibacterial activity and broth microdilution and colorimetric assay were used to measure the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. The result indicated that the highest inhibition zone (11 mm) was presented in ethanolic pods extract against multidrug resistance Klebsiella pneumoniae. The lowest MIC value of 0.05 mg/mL was obtained from branch extracted with ethanol against colistin resistant Pseudomonas aeruginosa. The lowest MBC values of 1.56 mg/mL were obtained when using C. umbellatum leaves extracted with methanol against all test antibiotic-resistant bacteria. This is the first report presented C. umbellatum extracts have the potential to eliminate antibiotic-resistant bacteria in patients. These findings show the antibacterial effect of C. umbellatum.


2022 ◽  
pp. 142-168
Author(s):  
Karthikeyan Ramalingam ◽  
Mohd Hashim Khan

An enhancement of antibiotic resistance in bacteria is associated with increased morbidity, mortality, and health infrastructure and hospital care charges. The Infectious Diseases Society of America (IDSA) has highlighted a section of antibiotic resistant bacteria termed as ESKAPE pathogens. These pathogens are proficient in ‘escaping' the biocidal effect of antibiotics and mutually representing new paradigms in transmission of diseases, pathogenesis, and resistance in their genetic materials. Essential oil-based nanoemulsions (NEs) have great interest towards the “natural” therapies as potential antimicrobial agents. Thermodynamic properties and kinetically stable potential of biphasic system of nanoemulsion enable them to be used as an effective nano-carrier with controlled release at the targeted point. This chapter describes the mechanisms of ESKAPE pathogens and the mode of the mechanisms of antimicrobial action of nanoemulsions for the treatment of MDR human pathogens.


2019 ◽  
Vol 7 (6) ◽  
pp. 157 ◽  
Author(s):  
Dan Zhang ◽  
Ren-You Gan ◽  
Arakkaveettil Kabeer Farha ◽  
Gowoon Kim ◽  
Qiong-Qiong Yang ◽  
...  

Although spice extracts are well known to exhibit antibacterial properties, there is lack of a comprehensive evaluation of the antibacterial effect of spices against antibiotic-resistant bacteria. In the present study, ethanolic extracts from a total of 67 spices were comprehensively investigated for their in vitro antibacterial activities by agar well diffusion against two common food-borne bacteria, Staphylococcus aureus and Salmonella enteritidis, with multi-drug resistance. Results showed that S. aureus was generally more sensitive to spice extracts than S. enteritidis. Of the 67 spice extracts, 38 exhibited antibacterial activity against drug-resistant S. aureus, while only four samples were effective on drug-resistant S. enteritidis. In addition, 11 spice extracts with inhibition zones greater than 15 mm were further verified for their broad-spectrum antibacterial properties using another 10 drug-resistant S. aureus strains. It was found that five spice extracts, including galangal, fructus galangae, cinnamon, yellow mustard seed, and rosemary, exhibited the highest antibacterial capacity. Further cytotoxicity of these 11 spices was determined and LC50 values were found to be more than 100 μg/mL except for galangal, rosemary, and sage, whose LC50 values were 9.32 ± 0.83, 19.77 ± 2.17, and 50.54 ± 2.57, respectively. Moreover, the antioxidant activities (ferric-reducing antioxidant power (FRAP) and trolox equivalent antioxidant capacity (TEAC) values) and total phenolic content (TPC) of spice extracts were determined to establish possible correlations with the antibacterial activity. Although the antibacterial effect was positively correlated with the antioxidant activities and TPC, the correlation was weak (r < 0.5), indicating that the antibacterial activity could also be attributed to other components besides antioxidant polyphenols in the tested spice extracts. In conclusion, dietary spices are good natural sources of antibacterial agents to fight against antibiotic-resistant bacteria, with potential applications as natural food preservatives and natural alternatives to antibiotics in animal feeding.


2021 ◽  
Vol 14 (7) ◽  
pp. 687
Author(s):  
Katelyn A. M. McMillan ◽  
Melanie R. Power Coombs

The anti-microbial peptide (AMP) pleurocidin is found in winter flounder (Pseudopleuronectes americanus), an Atlantic flounder species. There is promising evidence for clinical, aquaculture, and veterinary applications of pleurocidin. This review provides an overview of the current literature available on pleurocidin to guide future research directions. By fully elucidating pleurocidin’s mechanism of action and developing novel treatments against pathogenic microbes, populations of flatfish and humans can be protected. This review consulted publications from PubMed and Environment Complete with search terms such as “pleurocidin”, “winter flounder”, and “antimicrobial”. The fish immune system includes AMPs as a component of the innate immune system. Pleurocidin, one of these AMPs, has been found to be effective against various Gram-positive and Gram-negative bacteria. More investigations are required to determine pleurocidin’s suitability as a treatment against antibiotic-resistant pathogens. There is promising evidence for pleurocidin as a novel anti-cancer therapy. The peptide has been found to display potent anti-cancer effects against human cancer cells. Research efforts focused on pleurocidin may result in novel treatment strategies against antibiotic-resistant bacteria and cancer. More research is required to determine if the peptide is a suitable candidate to be developed into a novel anti-microbial treatment. Some of the microbes susceptible to the peptide are also pathogens of fish, suggesting its suitability as a therapeutic treatment for fish species.


Author(s):  
Maheshkumar Prakash Patil ◽  
Eun-Soo Noh ◽  
Yeong-Ae Seong, Gun-Do Kim

With the discovery of various antibiotic resistant bacteria, evaluations of antimicrobial activities of natural compounds have been preceded on antibiotic susceptible and resistant microorganisms. Several types of natural compounds have been reported to have similar effects on target microorganisms as compared to the widely used antibiotics. Persicaria thunbergii (Polygonaceae) has been known to have anti-tumoral, anti-angiogenesis, anti-oxidation and anti-inflammation functions. In this study, aerial parts of P. thunbergii were extracted using methanol, chloroform, and ethyl acetate to identify possible anti-bacterial effects. Agar disk diffusion method and time-kill assay were done to evaluate the antibacterial effect of P. thunbergii extracts. Two extracts ethyl acetate (EAE), and chloroform (CFE) were tested against Staphylococcus aureus. As a result, the extract from CFE and EAE showed antibacterial effect against S. aureus. The extract EAE showed the strongest inhibition effect compared to CFE. These results demonstrate that the EAE extract which originated from P. thunbergii can probably play a role as an antibacterial agent.


2020 ◽  
Vol 63 (12) ◽  
pp. 720-723
Author(s):  
Il-Hwan Kim

We often use topical antibiotics for simple excisions or the skin after minor wounds. This is a long-standing practice to minimize scarring by preventing wound or surgical site infection to promote wound healing. Is this old practice the right way for today? Is there a scientific basis for it and can it persist? These questions are related to the increase in antibiotic-resistant bacteria in Korea. Currently, the guidelines for the use of oral antibiotics have been established and are being applied relatively well-controlled to prevent overuse and misuse, while discussions for evaluating the adequacy of the prophylactic use of topical antibiotics or establishing correct guidelines are lacking. Based on related research data, American Academy of Dermatology has been continuously campaigning against the abuse of prophylactic antibiotics by the public and doctors, following the increase in the abuse of topical antibiotics since 2013. Therefore, we discuss the necessity of using topical antibiotics for the prophylaxis based on literature evidence. Now is the time to make efforts to prevent the increase of antibiotic-resistant bacteria through the correct use and by reducing the prescription of topical antibiotics in Korea.


Sign in / Sign up

Export Citation Format

Share Document