scholarly journals Antibacterial Effect of Persicaria thunbergii on Staphylococcus aureus

Author(s):  
Maheshkumar Prakash Patil ◽  
Eun-Soo Noh ◽  
Yeong-Ae Seong, Gun-Do Kim

With the discovery of various antibiotic resistant bacteria, evaluations of antimicrobial activities of natural compounds have been preceded on antibiotic susceptible and resistant microorganisms. Several types of natural compounds have been reported to have similar effects on target microorganisms as compared to the widely used antibiotics. Persicaria thunbergii (Polygonaceae) has been known to have anti-tumoral, anti-angiogenesis, anti-oxidation and anti-inflammation functions. In this study, aerial parts of P. thunbergii were extracted using methanol, chloroform, and ethyl acetate to identify possible anti-bacterial effects. Agar disk diffusion method and time-kill assay were done to evaluate the antibacterial effect of P. thunbergii extracts. Two extracts ethyl acetate (EAE), and chloroform (CFE) were tested against Staphylococcus aureus. As a result, the extract from CFE and EAE showed antibacterial effect against S. aureus. The extract EAE showed the strongest inhibition effect compared to CFE. These results demonstrate that the EAE extract which originated from P. thunbergii can probably play a role as an antibacterial agent.

Author(s):  
ZAMHARIRA MUSLIM ◽  
YONANIKO DEPHINTO

Objective: This research aims to analyze the ability of robusta coffee leaves fraction extract to inhibit the growth of Staphylococcus aureus and Escherichia coli and also determine the minimum inhibitory concentration (MIC). Methods: Antibacterial activity evaluated by the disc diffusion method observed in four types of fraction of extract robusta coffee leaves (n-hexane, ethyl acetate, ethanol, and water). Each extract divided into three various concentrations, 5%, 10%, and 15%. Determination of antimicrobial activity in vitro by the disk diffusion method. Results: Ethyl acetate fraction of coffee leaves extract produced the largest diameter zone of inhibition of bacterial growth compared to other extraction fractions of 17.28 mm in E. coli and 18.58 mm in S. aureus. The MIC of coffee leaves extract fraction water, ethyl acetate, and n-hexane on E. coli and S. aureus is 5%, while the fraction ethanol MIC is 10%. Conclusion: The antibacterial effect of ethyl acetate fraction of coffee leaves extract showed an antibacterial effect that was better than the fraction of n-hexane, ethanol, and water.


2005 ◽  
Vol 68 (2) ◽  
pp. 347-352 ◽  
Author(s):  
AGNÈS PERRIN-GUYOMARD ◽  
CHRISTOPHE SOUMET ◽  
ROLAND LECLERCQ ◽  
FLORENCE DOUCET-POPULAIRE ◽  
PASCAL SANDERS

The presence of antibiotic-resistant bacteria in pasteurized milk was detected by plating 18 milk samples on selective media containing β-lactams, macrolides, or a glycopeptide. Most samples contained gram-positive bacteria that grew on agar plates containing oxacillin, erythromycin, and/or spiramycin. The disk-diffusion method confirmed resistance to erythromycin and/or spiramycin in 86 and 65% of the coryneform bacteria and Micrococcaceae tested, respectively. PCR and sequence analysis revealed the presence of an ermC gene in 2 of the 25 Micrococcaceae strains investigated for their resistance to erythromycin and/or spiramycin. None of the 14 corynebacteria strains resistant to erythromycin and/or spiramycin harbored the erm(X) gene. No gene transfer could be demonstrated between the two erm(C) staphylococcal isolates and recipient strains of Enterococcus faecalis JH2-2 or Staphylococcus aureus 80CR5.


2010 ◽  
Vol 75 (10) ◽  
pp. 1347-1359 ◽  
Author(s):  
Jelena Lazarevic ◽  
Radosav Palic ◽  
Niko Radulovic ◽  
Novica Ristic ◽  
Gordana Stojanovic

GC and GC/MS analyses of the diethyl ether and ethyl acetate extracts obtained from the aerial parts of Stachys germanica subsp. heldreichii (Boiss) Hayek, Stachys iva Griseb., Stachys plumosa Griseb. and Stachys scardica Griseb., Balkan peninsula endemics, were performed. One hundred and seventy-nine constituents, accounting for 88.8-98.1% of the total composition of the extracts, were identified. The common feature of the diethyl ether extracts was the high content of terpenoids and fatty acidderived compounds, while the common feature of the ethyl acetate extracts was the prevalence of fatty acid-derived compounds. A disk diffusion method was used for the evaluation of the antimicrobial activities of the extracts against a panel of microorganisms (bacteria: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Salmonella enteritidis; fungi: Aspergillus niger and Candida albicans). The total antioxidant capacity of the extracts was evaluated by the phosphomolybdenum method. The preliminary bioassay results indicated that the diethyl ether extract of S. plumosa could be a possible source of antioxidant and antimicrobial compounds.


2020 ◽  
Vol 10 (1) ◽  
pp. 1-4
Author(s):  
Omor Ahmed Chowdhury ◽  
Md Raihan Ahmed ◽  
Md Raihan Dipu ◽  
Md Aftab Uddin

The use of earphones has increased in recent times throughout the world especially among the different level of students such as school, college or university who have a higher tendency of sharing these among them. Unlike airline headsets, headphones and stethoscope ear-pieces, ear phones are often shared by multiple users and can be a potential medium for transmission of pathogens, which can give rise to various ear related infections. The objective of this study was to detect the pathogenic bacteria from the ear-phones used by the students of Stamford University Bangladesh. A total of 16 ear-phone swabs were collected by sterile cotton swabs. The swabs were inoculated onto blood agar and incubated aerobically overnight at 37oC. Microscopic observation and standard biochemical tests were performed to confirm the identification of all the bacterial isolates. Six presumptively identified Staphylococcus spp. (38%) were tested against six different types of antibiotics following Kirby-Bauer disk diffusion method. Isolates were found to be 84% resistant against Cotrimoxazole and demonstrated 100% sensitivity to Vancomycin and Ciprorofloxacin. The findings of this study suggest the users to disinfect their respective ear phones and not to exchange them as they may act as a potential source to transfer pathogenic and antibiotic resistant bacteria among the ear phone users. Stamford Journal of Microbiology, Vol.10 (1) 2020: 1-4


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 191 ◽  
Author(s):  
Sobur ◽  
Hasan ◽  
Haque ◽  
Mridul ◽  
Noreddin ◽  
...  

Houseflies (Musca domestica) are well-known mechanical vectors for spreading multidrug-resistant bacteria. Fish sold in open markets are exposed to houseflies. The present study investigated the prevalence and antibiotypes of multidrug-resistant (MDR) Salmonella spp. in houseflies captured from a fish market. Direct interviews with fish vendors and consumers were also performed to draw their perceptions about the role of flies in spreading antibiotic-resistant bacteria. A total of 60 houseflies were captured from a local fish market in Bangladesh. The presence of Salmonella spp. was confirmed using PCR method. Antibiogram was determined by the disk diffusion method, followed by the detection of tetA, tetB, and qnrA resistance genes by PCR. From the interview, it was found that most of the consumers and vendors were not aware of antibiotic resistance, but reported that flies can carry pathogens. Salmonella spp. were identified from the surface of 34 (56.7%) houseflies, of which 31 (91.2%) were found to be MDR. This study revealed 25 antibiotypes among the isolated Salmonella spp. All tested isolates were found to be resistant to tetracycline. tetA and tetB were detected in 100% and 47.1% of the isolates, respectively. Among the 10 isolates phenotypically found resistant to ciprofloxacin, six (60%) were found to be positive for qnrA gene. As far as we know, this is the first study from Bangladesh to report and describe the molecular detection of multidrug-resistant Salmonella spp. in houseflies in a fish market facility. The occurrence of a high level of MDR Salmonella in houseflies in the fish market is of great public health concerns.


2019 ◽  
Vol 82 (11) ◽  
pp. 1857-1863 ◽  
Author(s):  
ZAHRA S. AL-KHAROUSI ◽  
NEJIB GUIZANI ◽  
ABDULLAH M. AL-SADI ◽  
ISMAIL M. AL-BULUSHI

ABSTRACT Enterobacteria may gain antibiotic resistance and be potent pathogens wherever they are present, including in fresh fruits and vegetables. This study tested the antibiotic resistance of enterobacteria isolated from 13 types of local and imported fresh fruits and vegetables (n = 105), using the standard Kirby-Bauer disk diffusion method. Phenotypic and genotypic characterizations of AmpC β-lactamases were determined in cefoxitin-resistant isolates. Ten percent of the enterobacteria tested (n = 88) were pansusceptible, 74% were resistant to at least one antibiotic, and 16% were multidrug resistant. Enterobacteria isolates showed the highest antibiotic resistance against ampicillin (66%), cephalothin (57%), amoxicillin–clavulanic acid (33%), cefoxitin (31%), tetracycline (9%), nalidixic acid (7%), trimethoprim (6%), and kanamycin (5%). Three isolates showed intermediate resistance to the clinically important antibiotic imipenem. Escherichia coli isolated from lettuce exhibited multidrug resistance against five antibiotics. Fifteen isolates were confirmed to have AmpC β-lactamase, using the inhibitor-based test and the antagonism test; the latter test confirmed that the enzyme was an inducible type. Four types of ampC β-lactamase genes (CIT, EBC, FOX, and MOX) were detected in eight isolates: four Enterobacter cloacae isolates and one isolate each of Citrobacter freundii, Enterobacter asburiae, Enterobacter hormaechei, and Enterobacter ludwigii. It was concluded that fresh fruits and vegetables might play a role as a source or vehicle for transferring antibiotic-resistant bacteria that might spread to other countries through exportation. The clinically significant AmpC β-lactamase was rarely documented in the literature on bacteria isolated from fruits and vegetables, and to our knowledge, this is the first report on the detection of an inducible type in such commodities.


2021 ◽  
Vol 46 (2) ◽  
Author(s):  
O. B Daramola ◽  
A. A Olajide ◽  
N Torimiro ◽  
R. C George

Wound infections have become life threatening as a result of treatment failures caused by multi-drug resistant pathogens. The search for newer compounds potent against antibiotic resistant bacteria associated with wounds is crucial. Hence this study investigated the application of antibacterial photodynamic therapy using meso tetra-(4-phenyl) porphyrin (TPP), metallated with zinc, tin and silver (ZnTPP, SnTPP and AgTPP), meso tetra-(4-sulphonatephenyl) porphyrin (TPPS) and the corresponding metallo meso tetra-(4-sulphonatephenyl) porphyrin (MTPPS) as photosensitizers. The in-vitro toxicity and photo-toxicity properties on four chronic wound colonizing multi-drug resistant bacterial strains: Staphylococcus aureus, Klebsiella sp., Proteus sp., and Escherichia coli were assessed using agar well diffusion method. Photo-toxicity of the compounds was investigated using 100 Watt tungsten lamp. Inhibitory activity of porphyrins tested against these bacterial strains showed Staphylococcus aureus to have both lowest (11±0.0 mm) and highest (33±1.1 mm) susceptibility to SnTPPS and ZnTPPS respectively. The sequence of data also showed appreciable improvement in the antimicrobial activities of five metalloporphyrins (SnTPP, AgTPP, ZnTPPS, SnTPPS and AgTPPS) exposed to light rays than when tested against bacterial strains in dark condition. ZnTPPS exhibited the best activity with improved photo-toxic activities against all bacterial strains (Staphylococcus aureus 33±1.1 mm, Klebsiella sp. 32±0.7 mm, Proteus sp. 28±0.7 mm and Escherichia coli 30±1.4 mm) examined in this study.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Charu Arjyal ◽  
Jyoti KC ◽  
Shreya Neupane

Methicillin-resistant Staphylococcus aureus (MRSA) infection in human beings and animals is concerning; it stands out as one of the leading agents causing nosocomial and community infections. Also, marginally increasing drug resistance in MRSA has limited therapeutic options. This study focuses on estimating the prevalence of MRSA in shrines, a place where human and animal interaction is frequent, sharing antibiotic-resistant bacteria, antibiotic-resistant genes, and diseases. A total of 120 environmental swabs were collected from targeted areas during the study period, March 2018 to May 2018. Staphylococcus aureus was identified by growth on mannitol salt agar (MSA), and MRSA by growth on mannitol salt agar containing 4 μg Oxacillin, Gram staining, and conventional biochemical test. Isolates of S. aureus were characterized by antibiotic susceptibility testing using the disc diffusion method. MRSA and methicillin-sensitive S. aureus (MSSA) proportion were 19% and 81%, respectively; a high rate of MRSA was observed in isolates from Thapathali (28.6%). MSSA isolates showed a high rate of resistance to erythromycin (64.7%). MRSA isolates were resistant to gentamicin (50%), cotrimoxazole (25%), erythromycin (50%), and ciprofloxacin (25%). The isolates were susceptible to linezolid (100%), clindamycin (100%), ciprofloxacin (75%), erythromycin (50%), tetracycline (100%), and cotrimoxazole (75%). Intermediate resistance was also found in gentamicin (50%). Of the 11 MSSA isolates that were erythromycin resistant and clindamycin sensitive, 6 (54.5%) showed the inducible clindamycin resistance (ICR) pattern and 2 MRSA isolates that were erythromycin resistant and clindamycin sensitive showed ICR pattern. Fifteen MSSA isolates were β-lactamase positive, whereas only two MRSA isolates showed β-lactamase production. There exists a minimal research work on infectious diseases that are shared between primates and animals. This study suggests the pervasiveness of MRSA/MSSA in the shrines, which may be a primary place for pathogen exchange between humans and primates.


2015 ◽  
Vol 09 (04) ◽  
pp. 580-586 ◽  
Author(s):  
Priscila de Camargo Smolarek ◽  
Luis Antonio Esmerino ◽  
Ana Cláudia Chibinski ◽  
Marcelo Carlos Bortoluzzi ◽  
Elizabete Brasil dos Santos ◽  
...  

ABSTRACT Objectives: This in vitro study evaluated the antimicrobial effects of commercial toothpastes containing natural compounds. Materials and Methods: The study groups were divided based on the natural compound present in the toothpaste composition: Sorbitol (I), tocopherol (II), mint (III), cinnamon/mint (IV), propolis/melaleuca (V), mint/açai (VI), mint/guarana (VII), propolis (VIII), negative control (IX), and the positive control (X). The antimicrobial properties of the toothpastes were tested using the disk diffusion method against oral pathogens: Streptococcus mutans, Pseudomonas aeruginosa, and Enterococcus faecalis. The resulting inhibition halos were measured in millimeters. Results: The data indicated that the bacteria responded differently to the toothpastes (P < 0.0001). The diameters of the inhibition halos against S. mutans were in decreasing order of efficacy: Propolis/melaleuca > mint/guarana > mint/açai > sorbitol > tocopherol > cinnamon/mint > propolis > mint (P < 0.001 vs. negative control). E. faecalis showed variable responses to the dentifrices in the following order of decreasing efficacy: Mint/guarana > propolis > sorbitol > mint/açai > tocopherol > cinnamon/mint > mint = propolis/melaleuca = negative control. The product with the highest antimicrobial activity was mint/guarana, which was significantly different than propolis/melaleuca, mint, cinnamon/mint, and tocopherol and negative control (P < 0.001). The statistical analysis indicated that propolis, sorbitol, and mint/açai did not show any differences compared to mint/guarana (P > 0.05) and positive control (P > 0.05). P. aeruginosa was resistant to all dental gels tested including positive control. Conclusion: The toothpastes with natural compounds have therapeutic potential and need more detailed searches for the correct clinic therapeutic application. The results from this study revealed differences in the antimicrobial activities of commercial toothpastes with natural compounds.


Sign in / Sign up

Export Citation Format

Share Document