A modified one-dimensional constitutive model of pseudoelastic SMAs and its application in simulating the force–deformation relationship of SMA helical springs

2020 ◽  
Vol 29 (11) ◽  
pp. 115017
Author(s):  
Zhenhua Zhang ◽  
Liang Feng ◽  
Piao Sheng ◽  
Jingsi Zhang ◽  
Yihao Liu
2015 ◽  
Vol 1089 ◽  
pp. 37-41
Author(s):  
Jiang Wang ◽  
Sheng Li Guo ◽  
Sheng Pu Liu ◽  
Cheng Liu ◽  
Qi Fei Zheng

The hot deformation behavior of SiC/6168Al composite was studied by means of hot compression tests in the temperature range of 300-450 °C and strain rate range of 0.01-10 s-1. The constitutive model was developed to predict the stress-strain curves of this composite during hot deformation. This model was established by considering the effect of the strain on material constants calculated by using the Zenter-Hollomon parameter in the hyperbolic Arrhenius-type equation. It was found that the relationship of n, α, Q, lnA and ε could be expressed by a five-order polynomial. The stress-strain curves obtained by this model showed a good agreement with experimental results. The proposed model can accurately describe the hot flow behavior of SiC/6168Al composite, and can be used to numerically analyze the hot forming processes.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Feng Huang ◽  
Jianguo Lyu ◽  
Guihe Wang ◽  
Hongyan Liu

Vacuum tube dewatering method and light well point method have been widely used in engineering dewatering and foundation treatment. However, there is little research on the calculation method of unsaturated seepage under the effect of vacuum pressure which is generated by the vacuum well. In view of this, the one-dimensional (1D) steady seepage law of unsaturated soil in vacuum field has been analyzed based on Darcy’s law, basic equations, and finite difference method. First, the gravity drainage ability is analyzed. The analysis presents that much unsaturated water can not be drained off only by gravity effect because of surface tension. Second, the unsaturated vacuum seepage equations are built up in conditions of flux boundary and waterhead boundary. Finally, two examples are analyzed based on the relationship of matric suction and permeability coefficient after boundary conditions are determined. The results show that vacuum pressure will significantly enhance the drainage ability of unsaturated water by improving the hydraulic gradient of unsaturated water.


2020 ◽  
Vol 30 (1) ◽  
pp. 130-137
Author(s):  
Hengxiao Yang ◽  
Qimian Mo ◽  
Hengyu Lu ◽  
Shixun Zhang ◽  
Wei Cao ◽  
...  

AbstractTo describe uncured rubber melt flow, a modified Phan–Thien–Tanner (PTT) model was proposed to characterize the rheological behavior and a viscoelastic one-dimensional flow theory was established in terms of incompressible fluid. The corresponding numerical method was constructed to determine the solution. Rotational rheological experiments were conducted to validate the proposed model. The influence of the parameters in the constitutive model was investigated by comparing the calculated and experimental viscosity to determine the most suitable parameters. The uncured rubber viscosity was 3–4 orders larger than that of plastic and did not have a visible Newtonian region. Compared with the Cross-Williams-Landel-Ferry (Cross-WLF) and original PTT models, the modified PTT model can describe the rheological characteristics in the entire shear-rate region if the parameters are set correctly.


2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Tao Wu ◽  
Zhenghong Deng ◽  
Qingyue Gu ◽  
Jiwei Xu

We explore the estimation of a two-dimensional (2D) nonsymmetric coherently distributed (CD) source using L-shaped arrays. Compared with a symmetric source, the modeling and estimation of a nonsymmetric source are more practical. A nonsymmetric CD source is established through modeling the deterministic angular signal distribution function as a summation of Gaussian probability density functions. Parameter estimation of the nonsymmetric distributed source is proposed under an expectation maximization (EM) framework. The proposed EM iterative calculation contains three steps in each cycle. Firstly, the nominal azimuth angles and nominal elevation angles of Gaussian components in the nonsymmetric source are obtained from the relationship of rotational invariance matrices. Then, angular spreads can be solved through one-dimensional (1D) searching based on nominal angles. Finally, the powers of Gaussian components are obtained by solving least-squares estimators. Simulations are conducted to verify the effectiveness of the nonsymmetric CD model and estimation technique.


2016 ◽  
Vol 67 ◽  
pp. 03050
Author(s):  
Min Yang ◽  
Zhuo-cheng Ou ◽  
Zhuo-ping Duan ◽  
Feng-lei Huang

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2710 ◽  
Author(s):  
Carlos Fuentes ◽  
Carlos Chávez

The aim of this study is the deduction of an analytic representation of the optimal irrigation flow depending on the border length, hydrodynamic properties, and soil moisture constants, with high values of the coefficient of uniformity. In order not to be limited to the simplified models, the linear relationship of the numerical simulation with the hydrodynamic model, formed by the coupled equations of Barré de Saint-Venant and Richards, was established. Sample records for 10 soil types of contrasting texture were used and were applied to three water depths. On the other hand, the analytical representation of the linear relationship using the Parlange theory of infiltration proposed for integrating the differential equation of one-dimensional vertical infiltration was established. The obtained formula for calculating the optimal unitary discharge is a function of the border strip length, the net depth, the characteristic infiltration parameters (capillary forces, sorptivity, and gravitational forces), the saturated hydraulic conductivity, and a shape parameter of the hydrodynamic characteristics. The good accordance between the numerical and analytical results allows us to recommend the formula for the design of gravity irrigation.


2013 ◽  
Vol 419 ◽  
pp. 203-208
Author(s):  
Ying Yu ◽  
Yao Run Peng ◽  
Shi Xin Lan ◽  
Ping Zhou

Wave spring is a key component of multi-disc wet clutch and the response speed and running quality of multi-disc wet clutch is affected by its characteristics. This paper analyses the theoretical calculation of load-deformation relationship of wave spring. The load-deformation relationship of wave spring is obtained by ANSYS10.0 software according to its structural characteristics and actual boundary condition and compared with the calculated results based on different methods and the measured value, and then study the effect of the wave number on the load-deformation relationship of wave spring. The results show that the calculated value of finite element analysis (FEM) is closer to the measured value and the FEM has more advantages on simulation of the working performance of wave spring.


2019 ◽  
Vol 31 (1) ◽  
pp. 100-116 ◽  
Author(s):  
Bingfei Liu ◽  
Qingfei Wang ◽  
Kai Yin ◽  
Liwen Wang

A theoretical model for the crack monitoring of the shape memory alloy intelligent concrete is presented in this work. The mechanical properties of shape memory alloy materials are first given by the experimental test. The one-dimensional constitutive model of the shape memory alloys is reviewed by degenerating from a three-dimensional model, and the behaviors of the shape memory alloys under different working conditions are then discussed. By combining the electrical resistivity model and the one-dimensional shape memory alloy constitutive model, the crack monitoring model of the shape memory alloy intelligent concrete is given, and the relationships between the crack width of the concrete and the electrical resistance variation of the shape memory alloy materials for different crack monitoring processes of shape memory alloy intelligent concrete are finally presented. The numerical results of the present model are compared with the published experimental data to verify the correctness of the model.


Sign in / Sign up

Export Citation Format

Share Document