Finite Element Analysis for Wave Spring of Multi-Disc Wet Clutch Based on ANSYS

2013 ◽  
Vol 419 ◽  
pp. 203-208
Author(s):  
Ying Yu ◽  
Yao Run Peng ◽  
Shi Xin Lan ◽  
Ping Zhou

Wave spring is a key component of multi-disc wet clutch and the response speed and running quality of multi-disc wet clutch is affected by its characteristics. This paper analyses the theoretical calculation of load-deformation relationship of wave spring. The load-deformation relationship of wave spring is obtained by ANSYS10.0 software according to its structural characteristics and actual boundary condition and compared with the calculated results based on different methods and the measured value, and then study the effect of the wave number on the load-deformation relationship of wave spring. The results show that the calculated value of finite element analysis (FEM) is closer to the measured value and the FEM has more advantages on simulation of the working performance of wave spring.

2012 ◽  
Vol 476-478 ◽  
pp. 2463-2468 ◽  
Author(s):  
Ji Cheng Zhang ◽  
Jun Yang

In this paper, a constitutive relationship of the concrete core restrained by L-Shaped steel tube is put forward based on referring to the constitutive relations of core concrete in concrete-filled square steel tube columns, which takes the restraint of steel tube to concrete as an equivalent confinable effect coefficient . Load-deformation relationship of L-Shaped concrete-filled steel tubular column subjected to axial compression is analyzed by finite element analysis (using ABAQUS software). The predicted load versus deformation relationship cures are in good agreement with those of tests based on the finite element analysis, loads carried by steel tubes and concrete respectively during the loading process, as well as interactions between them are analyzed. Finally, influences of length-width ratio and width-thickness ratio on the interaction between steel tubes and concrete are investigated.


2012 ◽  
Vol 538-541 ◽  
pp. 2953-2956
Author(s):  
Ya Li ◽  
Guang Sheng Ren

The static and stability analysis of steel structure were taken according to steel structure work platform’s requirements and structural characteristics in a subway parking space by using the software model which is established by Pro/E software and implanted into the finite element analysis software ANSYS Workbench. The maximum deformation and stress in design load of the steel structure were calculated and the linear stress strength analysis of the key parts was carried out, also both the analysis and testing of the supporting pillar’s stability were performed. The results show that the structure model established by Pro/E and the calculation method are reasonable. Moreover, the calculation results are of high accuracy. The profile size is properly chosen and the structure bearing capacity and deformation meet the design requirements.


2014 ◽  
Vol 681 ◽  
pp. 222-228
Author(s):  
Shou Tao Yao ◽  
Wei Cheng Zhao ◽  
Qun Cheng

High-rise super large aerial platform project construction has been a greater danger, How to ensure the quality of components assembled and the safety of the construction project is worthy of study. Through finite element analysis on construction conditions of steel structures, ensures the hydraulic synchronous lifting and construction technology of high-altitude hoisting and assembly, greatly reduced the difficulty of installation, quality, safety, cost, schedule is guaranteed.


2014 ◽  
Vol 680 ◽  
pp. 249-253
Author(s):  
Zhang Qi Wang ◽  
Jun Li ◽  
Wen Gang Yang ◽  
Yong Feng Cheng

Strain clamp is an important connection device in guy tower. If the quality of the compression splicing position is unsatisfied, strain clamp tends to be damaged which may lead to the final collapse of a guy tower as well as huge economic lost. In this paper, stress distribution on the compressible tube and guy cable is analyzed by FEM, and a large equivalent stress of guy cable is applied to the compression splicing position. During this process, a finite element model of strain clamp is established for guy cables at compression splicing position, problems of elastic-plastic and contracting are studied and the whole compressing process of compressible position is simulated. The guy cable cracks easily at the position of compressible tube’s port, the inner part of the compressible tube has a larger equivalent stress than outside.


2018 ◽  
Vol 89 (11) ◽  
pp. 2142-2153 ◽  
Author(s):  
Xiaochuan Chen ◽  
Di Wang ◽  
Yiping Qiu ◽  
Jun Wang ◽  
Yong Li ◽  
...  

To analyze the stress state of seed cotton in the process of cotton ginning and to improve the quality of lint, a new model for cotton, the laminated cotton model, is presented based on the idea of a composite laminate. The model assumes the cotton mass is made up of a certain number of cotton fibers, each of which has a different arrangement angle. Based on this model, the ginning process is simulated using finite element analysis. The mechanical properties of a single cotton fiber that is either machine- or hand-picked are obtained. The working condition of the ginning process is described successfully. By analyzing the influence of different working conditions on the serration cotton ginning process, the simulation results show the model prediction is reasonably consistent with existing experiments. For example, to improve the productivity and quality of lint, it is important to guarantee the saw teeth are sharp and smooth, with none being crooked or inverted, and missing teeth on each saw blade should not exceed the specified value.


Author(s):  
X. J. Xin ◽  
Z. J. Pei ◽  
Wenjie Liu

Silicon is the primary semiconductor material used to fabricate microchips. The quality of microchips depends directly on the quality of starting silicon wafers. A series of processes are required to manufacture high quality silicon wafers. Surface grinding is one of the processes used to flatten the wire-sawn wafers. A major issue in grinding of wire-sawn wafers is the reduction and elimination of wire-sawing induced waviness. Several approaches (namely, combination of grinding and lapping, reduced chuck vacuum, soft-pad, and wax mounting) have been proposed to address this issue. The results of finite element analysis modeling of these approaches have shown that soft-pad grinding is the most promising approach since it is very effective in reducing the waviness and very easy to be adopted to conventional grinding environment. This paper presents a study of finite element analysis on soft-pad grinding of wire-sawn silicon wafers, covering the mechanisms of waviness reduction and the effects of pad material properties.


e-Polymers ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 27-33
Author(s):  
Dae Young Kim ◽  
Hee Seong Kim ◽  
Ji Hoon Kim

AbstractCarbon fiber reinforced plastics (CFRPs) are advanced composite materials that have been used as lightweight structural materials for vehicles. Unlike general isotropic materials, the structural characteristics of composite materials are strongly influenced by the stacking directions and sequences of the composite laminates. In this study, finite element analysis was used to predict the material properties of the carbon fibers and the resin composing a CFRP in cases of laminated carbon fibers and modified external angles. The results verify the approach’s reliability by comparing the simulation results and the real test results related to the material properties of the carbon fibers and the resin. The results of the finite element analysis and the experimental results were compared with the load-displacement curves and the maximum load. The [02/902]S, [902/02]2, and [0/90]2S specimens showed a maximum error rate of 8.6%, whereas the [902/02]S, [02/902]2, and [90/0]2S specimens showed a maximum error rate of approximately 12.93%. By applying CFRP static collapse analysis of fiber properties and resin properties through basic experiments and basic theory, we predicted the properties of CFRPs through finite element analysis; an error rate of approximately 10% indicated that our approach is effective.


2020 ◽  
Vol 13 (1) ◽  
pp. 126-132
Author(s):  
László Márton ◽  
Ferenc Szigeti ◽  
Gergely Dezső

AbstractFor air-spring production the fabric winding is what prepares the semi-finished materials. The rubber body, that we called the membrane is made from using several layers of fabric and rubber. Building together these layers defines the mechanical properties. During the winding up, we prepare the cut rubber or fabric layers in rolls. Quality of rolling and the performance to make the semi-finished material, depend on the machine which is used for the winding. To satisfy the higher production capacity it was necessary to create a modern construction using automated systems. To assure the ergonomic expectations was a main viewpoint too. My thesis main goal is to explain, in detail, my design and to prove the device structural solutions using finite element analysis.


Author(s):  
Richard Regueiro ◽  
Adam Blanchard ◽  
Kristin Constancio ◽  
Logan Williams

Understanding the mechanics of lens accommodation (ability of the eye dynamically to focus near to far, or far to near) can assist in the diagnosis of early presbyopia as well as identify potential clinical treatments and lens prosthetic implantation strategies [1–3]. Related to the mechanism of focusing, presbyopia is an ocular disease that stems from age-related loss of lens accommodation leading to a loss of focusing range and near vision [4]. This is attributed to changes in ciliary muscle function, as well as changes in the mechanical properties of the lens substance, lens capsule, and zonules, presumably. The precise relationship of these changes, however, is not well described. The location of the lens in the eye is shown in Fig.1 [5].


Sign in / Sign up

Export Citation Format

Share Document