scholarly journals Passive Janus Particles Are Self-propelled in Active Nematics

Author(s):  
Benjamin Loewe ◽  
Tyler N Shendruk

Abstract While active systems possess notable potential to form the foundation of new classes of autonomous materials, designing systems that can extract functional work from active surroundings has proven challenging. In this work, we extend these efforts to the realm of designed active liquid crystal/colloidal composites. We propose suspending colloidal particles with Janus anchoring conditions in an active nematic medium. These passive Janus particles become effectively self-propelled once immersed into an active nematic bath. The self-propulsion of passive Janus particles arises from the effective +1/2 topological charge their surface enforces on the surrounding active fluid. We analytically study their dynamics and the orientational dependence on the position of a companion −1/2 defect. We predict that at sufficiently small activity, the colloid and companion defect remain bound to each other, with the defect strongly orienting the colloid to propel either parallel or perpendicular to the nematic. At sufficiently high activity, we predict an unbinding of the colloid/defect pair. This work demonstrates how suspending engineered colloids in active liquid crystals may present a path to extracting activity to drive functionality.

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 678
Author(s):  
Yuqi Han ◽  
Yan Jiang ◽  
Wei Guo ◽  
Bing Li ◽  
Lu Zhang ◽  
...  

Based on the anchoring effect due to the self-assembling behavior of the phospholipid molecules at the interface between the liquid crystal and water phases on the orientation of liquid crystals, the optical response associated with the orientation and structure of liquid crystals with respect to the concentration of 1,2-didodecanoyl-sn-glycero-3-phosphocholine solution has been investigated. The optical response owing to changes in the orientation and structure of the mixed cholesteric liquid crystals with respect to the change in the concentration of phosphatidylcholine has been obtained. Moreover, the feasibility of using as-prepared mixed cholesteric liquid crystals to measure the phosphatidylcholine concentration has been verified. A methodology to measure the reflectance spectrum by using mixed cholesteric liquid crystals to sensitize the phosphatidylcholine concentration has been further realized. The sensitization effect of the mixed cholesteric liquid crystals on the measurement of phosphatidylcholine concentration was also verified.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 648 ◽  
Author(s):  
Mamatha Nagaraj

Liquid crystal templating is a versatile technique to create novel organic and inorganic materials with nanoscale features. It exploits the self-assembled architectures of liquid crystal phases as scaffolds. This article focuses on some of the key developments in lyotropic and thermotropic liquid crystals templating. The procedures that were employed to create templated structures and the applications of these novel materials in various fields including mesoporous membranes, organic electronics, the synthesis of nanostructured materials and photonics, are described.


2008 ◽  
Vol 1134 ◽  
Author(s):  
John William Goodby ◽  
Martin Bates ◽  
Isabel Saez ◽  
Ewa Gorecka ◽  
Heinz Kitzerow ◽  
...  

AbstractLC-NANOP is an ESF EUROCORES SONS Collaborative Research Project that is addressing an innovative approach to self-organized nanostructures by combination of a variety of organic, inorganic and metal scaffolds with the unique self-organization properties of liquid crystals to obtain liquid crystal nano-particles. LC-NANOP is concerned with the synthesis, analysis, characterization, modeling and physico-chemical properties of super- and supra-molecular systems which are formed from a nano-particle as a central scaffold, surrounded by a layer of liquid crystal. The self-organization properties of the liquid crystal coating is the driving force leading to the self-assembly of the nano-particles into secondary or tertiary hierarchical structures, with emphasis on the systematic variation of nano-particle size, chirality, shape and functionality. This bottom-up approach to nano-structuring is very powerful as it combines the extraordinary variety of morphologies that liquid crystals present with the combination of functional entities, relevant for chemical, biological, optoelectronic, and photonic tasks, etc, to create ordered nano-structures that can be controlled by external stimuli.


2020 ◽  
Vol 98 (7) ◽  
pp. 379-385
Author(s):  
Carson O. Zellman ◽  
Danielle Vu ◽  
Vance E. Williams

Although the impact of individual functional groups on the self-assembly of columnar liquid crystal phases has been widely studied, the effect of varying multiple substituents has received much less attention. Herein, we report a series of dibenzo[a,c]phenazines containing an alcohol or ether adjacent to an electron-withdrawing ester or acid. With one exception, these difunctional mesogens form columnar phases. The phase behavior appeared to be dominated by the electron-withdrawing substituent; transition temperatures were similar to derivatives with these groups in isolation. In most instances, the addition of an electron-donating group ortho to an ester or acid suppressed the melting temperature and elevated the clearing temperature, leading to broader liquid crystal thermal ranges. This effect was more pronounced for derivatives functionalized with longer chain hexyloxy groups. These results suggest a potential strategy for controlling the phase ranges of columnar liquid crystals and achieving room temperature mesophases.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 604 ◽  
Author(s):  
Ingo Dierking ◽  
Antônio Martins Figueiredo Neto

We introduce and shortly summarize a variety of more recent aspects of lyotropic liquid crystals (LLCs), which have drawn the attention of the liquid crystal and soft matter community and have recently led to an increasing number of groups studying this fascinating class of materials, alongside their normal activities in thermotopic LCs. The diversity of topics ranges from amphiphilic to inorganic liquid crystals, clays and biological liquid crystals, such as viruses, cellulose or DNA, to strongly anisotropic materials such as nanotubes, nanowires or graphene oxide dispersed in isotropic solvents. We conclude our admittedly somewhat subjective overview with materials exhibiting some fascinating properties, such as chromonics, ferroelectric lyotropics and active liquid crystals and living lyotropics, before we point out some possible and emerging applications of a class of materials that has long been standing in the shadow of the well-known applications of thermotropic liquid crystals, namely displays and electro-optic devices.


Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 455 ◽  
Author(s):  
Adam P. Draude ◽  
Ingo Dierking

Lyotropic liquid crystals from colloidal particles have been known for more than a century, but have attracted a revived interest over the last few years. This is due to the developments in nanoscience and nanotechnology, where the liquid crystal order can be exploited to orient and reorient the anisotropic colloids, thus enabling, increasing and switching the preferential properties of the nanoparticles. In particular, carbon-based colloids like carbon nanotubes and graphene/graphene–oxide have increasingly been studied with respect to their lyotropic liquid crystalline properties over the recent years. We critically review aspects of lyotropic graphene oxide liquid crystal with respect to properties and behavior which seem to be generally established, but also discuss those effects that are largely unfamiliar so far, or as of yet of controversial experimental or theoretical outcome.


2021 ◽  
Vol 11 (11) ◽  
pp. 5285
Author(s):  
Marcel G. Clerc ◽  
Gregorio González-Cortés ◽  
Paulina I. Hidalgo ◽  
Lucciano A. Letelier ◽  
Mauricio J. Morel ◽  
...  

The use of dye-doped liquid crystals allows the amplification of the coupling of light and liquid crystals. Light can induce the self-organization of the molecular order. The appearance of ring patterns has been observed, which has been associated with phase modulation. However, the morphology and dynamics of the ring patterns are not consistent with self-modulation. Based on an experimental setup with two parallel coherence beams orthogonal to a liquid crystal cell, one of which induces photo-isomerization and the other causes illumination, the formation of ring patterns is studied. To use these two coherent beams, we synthesize methylred methyl ester as a dye-dopant, which is photosensitive only to one of the light beams, and a commercial E7 liquid crystal as a matrix. Based on a mathematical model that accounts for the coupling between the concentration of the cis-state and the order parameter, we elucidate the emergence of the rings as forming patterns in an inhomogeneous medium. The bifurcation diagram is analytically characterized. The emergence, propagation of the rings, and the establishment of the ring patterns are in fair agreement with the experimental observations.


2016 ◽  
Vol 29 (3) ◽  
pp. 1604021 ◽  
Author(s):  
Hamed Shahsavan ◽  
Seyyed Muhammad Salili ◽  
Antal Jákli ◽  
Boxin Zhao

2010 ◽  
Vol 428-429 ◽  
pp. 173-181 ◽  
Author(s):  
Muklesur Rahman ◽  
Wei Lee

Colloids composed of liquid-crystal hydrosols exhibit a rich set of interesting phenomena. The coupling between liquid-crystalline media and colloidal particles plays an essential role leading to an abundant source of new physics. In the last few years, peculiar behaviors of carbon-nanotube-doped calamitic liquid crystals have attracted considerable attention. This paper provides a brief introduction to this alluring subject for its on-going research development in this laboratory. First presented are our current understandings of the nematic colloidal system comprising carbon nanotubes and of their possible orientation and dynamics under the application of an external field. Various electro-optical and electrical properties of a liquid-crystal display rectified by the nanoscale carbonaceous guest are then addressed to a larger extent. Dielectric relaxation obtained from a nematic impregnated with carbon nanotubes is also discussed. With historical significance for the dawn of the liquid-crystal–carbon-nanotube research, several important findings of enhanced nonlinear optical properties in typical nematic mesomaterials consisting of suspended nanotubes are delineated. With the new colloidal systems of elongated nanoscale solids dispersed in anisotropic fluids in the mesophase, many new intriguing phenomena are awaiting theoretical and experimental explorations. Collaborations are called to draw attention of interested theoretical physicists, in particular.


Sign in / Sign up

Export Citation Format

Share Document