scholarly journals One-BEC-species coherent oscillations with frequency controlled by a second species atom number

Author(s):  
Luis Morales-Molina ◽  
Edward Arevalo

Abstract Controlling the tunneling of atoms of one species using a different atom species is a fundamental step in the development of a new class of atom quantum devices, where detection, motion control, and other functions over the atoms, can be achieved by exploiting the interaction between two different atomic species. Here, we theoretically study coherent oscillations of a non-self-interacting Bose-Einstein condensate (BEC) species in a triple-well potential controlled by a self-interacting species self-trapped in the central well of the potential. In this system, a blockade, due to the interspecies interaction, prevents atoms of the non-self-interacting species from populating the central well. Thus, for an initial population imbalance between the left- and right-hand wells of the non-self-interacting species, coherent BEC oscillations are induced between these two wells, resembling those of Rabi-like BEC oscillations in a double-well potential. The oscillation period is found to scale linearly with the number of self-trapped atoms as well as with the interspecies interaction strength. This behavior is corroborated by the quantum many-particle and the mean-field models of the system. We show that BEC oscillations can be described by using an effective bosonic Josephson junction with a tunneling amplitude that depends on the number of the self-trapped atoms in the central well. We also consider the effect of the self-trapped atom losses on the coherent oscillations. We show, by using quantum trajectories, that this type of losses leads to a dynamical change in the oscillation period of the non-self-interacting species, which in turn allows the number of self-trapped atoms lost from the system to be estimated.

2004 ◽  
Vol 18 (09) ◽  
pp. 1339-1349 ◽  
Author(s):  
YAN XU ◽  
DUO-JE JIA ◽  
ZHAO-YANG CHEN ◽  
YUAN GAO ◽  
FA-SHEN LI

The deviation effect of spinor mode from the single-mode for a spin-1 Bose gas of trapped atoms is studied beyond the mean field theory. Based on the effective Hamiltonian with nondegenerated level of the collective spin states, the splitting level of the system energy due to the deviation effect has been calculated. For the large condensates of 87 Rb and 23 Na with atom number N>105, the splitting fraction of the energy, arising from the magnetization exhibited by the trapped Bose gas, is found to have a typical order of (10-4~10-8), decreasing as N-2 for 87 Rb and increasing as -N-2 for 23 Na , respectively.


2017 ◽  
Vol 28 (04) ◽  
pp. 1750043
Author(s):  
M. H. Eisa ◽  
A. S. Abdalla

The possible existence of quantum crystals phase of polariton condensate in two-dimensional microcavity polariton was studied by using mean-field method for bosons at zero temperature. In this study, we observe the supersolid crystallized (hexagonal, square) and a quantized winding number of the phase in a regime of strong- field interaction in rotating exciton–polariton condensates. First, the ground state of the condensate was found; and the solution was further extended for dynamics state to reach the equilibrium steady-state as well as their density profile and energy diagrams. The supersolid crystal is the result of the considerable deviation induced by the interaction of polaritons of both ground and dynamic states of a dressed dipolar Bose–Einstein condensate. Here, the researchers demonstrated the formation of a hexagonal lattice in the nonlinear regime at high polariton-density where polariton–polariton interactions dominate the behavior of the system. It was identified that stability regimes for ground state increases as the polariton–polariton interaction strength increases. The phase diagram for the stable vortex state will be useful for conducting experimental and theoretical studies on rotating dipolar quantum gases and many other exotic systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jason Hindes ◽  
Victoria Edwards ◽  
Klimka Szwaykowska Kasraie ◽  
George Stantchev ◽  
Ira B. Schwartz

AbstractUnderstanding swarm pattern formation is of great interest because it occurs naturally in many physical and biological systems, and has artificial applications in robotics. In both natural and engineered swarms, agent communication is typically local and sparse. This is because, over a limited sensing or communication range, the number of interactions an agent has is much smaller than the total possible number. A central question for self-organizing swarms interacting through sparse networks is whether or not collective motion states can emerge where all agents have coherent and stable dynamics. In this work we introduce the phenomenon of swarm shedding in which weakly-connected agents are ejected from stable milling patterns in self-propelled swarming networks with finite-range interactions. We show that swarm shedding can be localized around a few agents, or delocalized, and entail a simultaneous ejection of all agents in a network. Despite the complexity of milling motion in complex networks, we successfully build mean-field theory that accurately predicts both milling state dynamics and shedding transitions. The latter are described in terms of saddle-node bifurcations that depend on the range of communication, the inter-agent interaction strength, and the network topology.


2021 ◽  
Vol 240 (1) ◽  
pp. 383-417
Author(s):  
Nikolai Leopold ◽  
David Mitrouskas ◽  
Robert Seiringer

AbstractWe consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order.


Author(s):  
Phan Thành Nam ◽  
Marcin Napiórkowski

AbstractWe consider the homogeneous Bose gas on a unit torus in the mean-field regime when the interaction strength is proportional to the inverse of the particle number. In the limit when the number of particles becomes large, we derive a two-term expansion of the one-body density matrix of the ground state. The proof is based on a cubic correction to Bogoliubov’s approximation of the ground state energy and the ground state.


2021 ◽  
Vol 126 (15) ◽  
Author(s):  
M. B. Christensen ◽  
T. Vibel ◽  
A. J. Hilliard ◽  
M. B. Kruk ◽  
K. Pawłowski ◽  
...  

IUCrJ ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 468-479
Author(s):  
Danning Li ◽  
Yongli Wang ◽  
Shuyi Zong ◽  
Na Wang ◽  
Xin Li ◽  
...  

As the first step in the crystallization process, nucleation has been studied by many researchers. In this work, phenacetin (PHEN) was selected as a model compound to investigate the relationship between the solvent and nucleation kinetics. Induction times at different supersaturation in six solvents were measured. FTIR and NMR spectroscopy were employed to explore the solvent–solute interactions and the self-association properties in solution. Density functional theory (DFT) was adopted to evaluate the strength of solute–solvent interactions and the molecular conformations in different solvents. Based on these spectroscopy data, molecular simulation and nucleation kinetic results, a comprehensive understanding of the relationship between molecular structure, crystal structure, solution chemistry and nucleation dynamics is discussed. Both the solute–solvent interaction strength and the supramolecular structure formed by the self-association of solute molecules affect the nucleation rate. The findings reported here shed new light on the molecular mechanism of nucleation in solution.


2020 ◽  
Vol 35 (26) ◽  
pp. 2050227 ◽  
Author(s):  
Gennady P. Berman ◽  
Vyacheslav N. Gorshkov ◽  
Vladimir I. Tsifrinovich ◽  
Marco Merkli ◽  
Vladimir V. Tereshchuk

We consider a two-component dark matter halo (DMH) of a galaxy containing ultra-light axions (ULA) of different mass. The DMH is described as a Bose–Einstein condensate (BEC) in its ground state. In the mean-field (MF) limit, we have derived the integro-differential equations for the spherically symmetrical wave functions of the two DMH components. We studied, numerically, the radial distribution of the mass density of ULA and constructed the parameters which could be used to distinguish between the two- and one-component DMH. We also discuss an interesting connection between the BEC ground state of a one-component DMH and Black Hole temperature and entropy, and Unruh temperature.


Author(s):  
Yunsong Guo ◽  
Yubin Jiao ◽  
Xiaoning Liu ◽  
Xiangbo Zhu ◽  
Ying Wang

In this study, we investigate the evolution of vortex in harmonically trapped two-component coupled Bose–Einstein condensate with quintic-order nonlinearity. We derive the vortex solution of this two-component system based on the coupled quintic-order Gross–Pitaevskii equation model and the variational method. It is found that the evolution of vortex is a metastable state. The radius of vortex soliton shrinks and expands with time, resulting in periodic breathing oscillation, and the angular frequency of the breathing oscillation is twice the value of the harmonic trapping frequency under infinitesimal nonlinear strength. At the same time, it is also found that the higher-order nonlinear term has a quantitative effect rather than a qualitative impact on the oscillation period. With practical experimental setting, we identify the quasi-stable oscillation of the derived vortex evolution mode and illustrated its features graphically. The theoretical results developed in this work can be used to guide the experimental observation of the vortex phenomenon in ultracold coupled atomic systems with quintic-order nonlinearity.


2020 ◽  
Vol 34 (23) ◽  
pp. 2050241
Author(s):  
Jin Xu ◽  
Jinbin Li

We study the phase separation in three-component spin-orbit-angular-momentum coupled Bose–Einstein condensate with spin-1 in three dimensions. Different types of phase-separation are acquired upon an increase of the coupling strength, magnetic gradient strength, spin-dependent interaction strength and particle number above a critical value. Increasing the value of coupling strength and other related parameters shows distinct behaviors which are produced by repulsion for large strengths of spin-orbit angular-momentum (SOAM) coupling. The present investigation is carried out through a numerical Crank–Nicolson method of the underlying mean-field Gross–Pitaevskii equation.


Sign in / Sign up

Export Citation Format

Share Document