Ultrasound-mediated transdermal drug delivery of fluorescent nanoparticles and hyaluronic acid into porcine skin in vitro

2016 ◽  
Vol 25 (12) ◽  
pp. 124314 ◽  
Author(s):  
Huan-Lei Wang ◽  
Peng-Fei Fan ◽  
Xia-Sheng Guo ◽  
Juan Tu ◽  
Yong Ma ◽  
...  
2020 ◽  
Vol 859 ◽  
pp. 125-131 ◽  
Author(s):  
Phuvamin Suriyaamporn ◽  
Worranan Rangsimawong ◽  
Praneet Opanasopit ◽  
Tanasait Ngawhirunpat

Microneedles (MNs) are attractive micron scale technology, which has been used as a physical force to create transport pathways and enhance the permeability of drugs into the skin. Fluorescein sodium (FS), a hydrophilic drug was loaded in MNs for transportation through skin. The purposes of this study were to develop and evaluate the optimal formulation of FS-loaded polymeric microneedles (MNs) as a device for transdermal drug delivery system. The FS-MNs were fabricated by micro-molding technique and prepared by using Gantrez® S-97 (G) and hyaluronic acid (HA). The physical appearances were observed under digital microscope. The mechanical properties were determined by a texture analyzer. The insertion study was tested on neonatal porcine skin. The MNs height changing after insertion into the skin at predetermined times was measured to show dissolution ability of MNs. Finally, the drug permeation profile of FS-MNs was investigated by Franz diffusion cell. For the results, all formulations were complete fabrication of conical microneedle array (11 rows x 11 columns in 10 mm2 patch area) with average 600 + 20 μm in height, 300 + 5 μm in width, and 600 + 10 μm in interspace. The percent decrease of MNs height in mechanical strength of 30%G+5%HA was significantly less than others at 1.8 to 8.8 N/121 array. The formulation mixing with 30% Gantrez® S-97 had 100% of penetration into porcine skin. The dissolution ability showed that MNs were completely dissolved within 60 minutes. At 24 h of skin permeation, the FS permeated through the skin from 1%FS solution, 30%G+1%FS MNs, and 30%G+5%HA+1%FS MNs was 1.00%, 4.27% and 7.53%, respectively. The flux values of 1%FS solution, 30%G+1%FS MNs, and 30%G+5%HA+1%FS MNs were 0.006 μg/cm2/min, 0.032 μg/cm2/min, and 0.037 μg/cm2/min, respectively, indicating the highest skin permeability of FS from 30%G+5%HA+1%FS MNs. In conclusion, the 30%G+5%HA+1%FS formulation presented appropriate MNs properties as a device for transdermal drug delivery system.


2018 ◽  
Vol 10 (1) ◽  
pp. 67
Author(s):  
Bhawana Sethi ◽  
Rupa Mazumder

Objective: The present work was aimed at preparation of transdermal patches by a solvent casting method using a varying concentration of polymers i.e. methocel (K15 and K100), ethocel (4 and 10), gelatin, chitosan, eudragit (RL and RS) grade using plasticizer (glycerin and propylene glycol).Methods: The ratio of drug to polymers and plasticizer was varied and the effect of formulation variables was studied. Prepared transdermal patches were evaluated for physicochemical properties, in-vitro permeation studies, content uniformity, primary skin irritation studies and FT-IR studies.Results: The formulated transdermal patch by using Methocel K 100 M showed good physical properties. The average weight of patches prepared using glycerin as a plasticizer were ranged from 42.33-67.00 mg and propylene glycol as a plasticizer were ranged from 40.67-67.67 mg. The percentage moisture absorption varies from 1.76 to 10.73 for patches formulated using glycerin and 2.28 to 7.97 for propylene glycol patches. The percentage moisture loss from patches prepared using glycerin was ranged from 2.75 to 11.54 and 2.87 to 12.02 from propylene glycol. The water vapour transmission rate from patches prepared using glycerin was ranged from 0.25 to 0.92 and 0.41 to 1.76. The formulated patch showed the acceptable quantity of medicament ranged from (100.20-101.05%). This result met the test content uniformity as per BP (85% to 115%). According to that, the drug was consistent throughout the patches. The formulation PGD is considered as the best formulation, since it shows a maximum in vitro drug release as 43.75 % at 24 h. The drug release kinetics studied showed that the majority of formulations was following zero order.Conclusion: In conclusion, controlled release transdermal drug delivery system patches of aliskiren can be prepared using polymer combinations, with a different plasticizer. The release rate of drug depends upon the polymer. However, release kinetics followed zero order.


2020 ◽  
Vol 11 (4) ◽  
pp. 5373-5381
Author(s):  
Iskandarsyah ◽  
Camelia Dwi Putri Masrijal ◽  
Harmita

A hormonal contraception progestin such as medroxyprogesterone acetate (MPA) is used to helps regulate ovulation thus as a part of contraception hormone therapy as a method of birth control. This study aimed to formulate, characterized, evaluated transfersomal gel containing medroxyprogesterone acetate and to increased subcutaneous penetration of medroxyprogesterone acetate. In this research, three transfersomes formulas were prepared and optimized, e.g. F1, F2 and F3 with phosphatidylcholine: tween 80 concentration were 90:10; 85:15; and 75:25, respectively. F2 was the best formula with the highest entrapment efficiency 81.20±0.42 %, Average 81.35 ±0.78 nm, morphology of vesicles were spheres, indeks polidispersity 0.198±0.012 and zeta potential was -34.83±0.64 mV. The transpersonal gel (FGT) containing F2, and non-transpersonal gel containing MPA in methanol(FG) were prepared. In vitro penetration test were conducted to both of them using Franz Diffusion cells. Analysis of medroxyprogesterone acetate used a high performance liquid chromatographic (HPLC) method with an ultraviolet detector on reversed-phase C18, 5µm; 150 x 4.6 mmcolumn; using acetonitrile-0.1% formic acid (60:40/v:v) and was detected at a wavelength of 240 nm with flow rate at 1.0 mL/min. Gel stability evaluation results showed that FGT was better than FG on pH stability, viscosity and rheological properties. Based on in vitro penetration study, cumulative subcutaneous penetration of medroxyprogesterone acetate from FGT was 2356.45 ± 197.73 ng.cm-2 and from FG 359.15 ± 13.60 ng.cm-2, respectively. Flux value for FGT and FG were 112.77 ± 6,47 ng.cm-2.hr-1and 17.99 ± 4.81 ng.cm-2.hr-1, respectively. It could be concluded that transfersomal gel medroxyprogesterone acetate for transdermal drug delivery increased cumulative transdermal penetration of medroxyprogesterone acetate by six times more than non-transfersomal gel dosage form.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2570 ◽  
Author(s):  
Inés Serrano-Sevilla ◽  
Álvaro Artiga ◽  
Scott G. Mitchell ◽  
Laura De Matteis ◽  
Jesús M. de la Fuente

Natural polysaccharides are frequently used in the design of drug delivery systems due to their biocompatibility, biodegradability, and low toxicity. Moreover, they are diverse in structure, size, and charge, and their chemical functional groups can be easily modified to match the needs of the final application and mode of administration. This review focuses on polysaccharidic nanocarriers based on chitosan and hyaluronic acid for small interfering RNA (siRNA) delivery, which are highly positively and negatively charged, respectively. The key properties, strengths, and drawbacks of each polysaccharide are discussed. In addition, their use as efficient nanodelivery systems for gene silencing applications is put into context using the most recent examples from the literature. The latest advances in this field illustrate effectively how chitosan and hyaluronic acid can be modified or associated with other molecules in order to overcome their limitations to produce optimized siRNA delivery systems with promising in vitro and in vivo results.


2019 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Shikha Baghel Chauhan ◽  
Tanveer Naved ◽  
Nayyar Parvez

Objective: The combination therapy of ethinylestradiol and testosterone in post-menopausal females has shown improved sexual response and libido. The present studies were designed to develop a suitable matrix-type transdermal drug delivery system (TDDS) of ethinylestradiol and testosterone using the polymer chitosan.Methods: Five formulations (ET1 to ET5) were developed by varying the concentration of polymer and keeping the drug load constant. Physical parameters and drug excipient interaction studies were evaluated in all the formulations. In vitro skin permeation profiles of ethinylestradiol and testosterone from various formulations were simultaneously characterized in a thermostatically controlled modified Franz Diffusion cell using HPLC. Based on the physical parameters and in vitro skin permeation profile formulation ET3 containing 30 mg/ml of chitosan was found to be the best and chosen for further studies. Optimized formulation was subjected to in vivo pharmacokinetic analysis in rats using ELISA.Results: Stability profile of patch formulation ET3 depicted stability up to 3 mo. One week skin irritation evaluation in rats indicated that formulation ET3 was nonirritating. Combination transdermal patch across rat skin showed a maximum release of 92.936 and 95.03 % in 60 h with a flux of 2.088 and 21.398 µg/cm2h for ethinylestradiol and testosterone respectively.Conclusion: The net result of this study is the formulation of a stable, non-irritating transdermal patch of ethinylestradiol and testosterone, with good bioavailability and can be used as Estrogen Replacement Therapy (ERT) in postmenopausal women.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 163 ◽  
Author(s):  
Yongtai Zhang ◽  
Hongmei Hu ◽  
Qian Jing ◽  
Zhi Wang ◽  
Zehui He ◽  
...  

In the current study, diethylene glycol monoethyl ether-mediated microemulsions were combined with microneedles for enhanced transdermal aconitine delivery. The oil-in-water microemulsion increasedaconitine solubility and enhanced transdermal drug delivery and assistance with metal microneedles enhanced permeation of the aconitine-loaded microemulsion. Carried by the microemulsion, the in vitro permeability of aconitine was significantly enhanced, and further improved using microneedles. In vivo microdialysis revealed that the subcutaneous local drug concentration reached a high level within 30 min and remained relatively consistent to the end of the experimental period. AUC0-t of the microemulsion group was significantly higher than that of the aqueous solution group, and the microemulsion combined with microneedles group achieved the highest AUC0-t among the tested groups. The microemulsion and microdialysis probe also showed good biocompatibility with skin tissue. The microemulsion could be internalized by HaCaT and CCC-ESF-1 cells via lysosomes. The in vitro cytotoxicity of aconitine toward skin cells was reduced via encapsulation by microemulsion, and the prepared microemulsion developed no skin irritation. Hence, transdermal aconitine delivery and drug biosafety were effectively improved by loading into the microemulsion and assisting with microneedles, and in vivo microdialysis technique is suitable for realtime monitoring of transdermal drug delivery with microemulsion-based drug vehicles.


Sign in / Sign up

Export Citation Format

Share Document